Datadog announced an expanded strategic partnership with Google Cloud, which enables Google Cloud customers to proactively observe and secure their cloud-native and hybrid applications within Datadog's unified platform.
As part of the expanded partnership and integrations, Datadog integrates with Vertex AI, allowing AI ops teams and developers to monitor, analyze and optimize the performance of their machine learning models in production.
"Google Cloud continues to be a key partner for Datadog as we jointly help global businesses observe and secure their cloud applications," said Yrieix Garnier, VP of Product at Datadog. "The new Vertex AI integration expands this partnership and gives AI and ML developers full observability into their production applications built on Vertex AI. With out-of-the-box dashboards and real-time monitors, customers can get started quickly and ensure their models are performing at an optimal level while delivering predictions responsively at scale and without errors."
"Generative AI is fundamentally changing how many businesses operate, fueling a new era of cloud that can benefit virtually every area of an organization," said Kevin Icchpurani, Corporate VP, Global Partner Ecosystem & Channels at Google Cloud. "By applying Vertex AI, Datadog can help AI teams improve how they monitor and analyze the performance of machine learning models, ensuring they are functioning correctly and creating optimal value."
Datadog's integration with Vertex AI provides developers full observability on the prediction performance and resource utilization of their custom AI/ML models. The integration provides an out-of-the-box dashboard with prediction counts, latency, errors and resource (CPU/Memory/Network) utilization grouped by deployed models so teams can compare model performance side-by-side in production environments. It also helps detect data anomalies in order to maintain the reliability and robustness of machine learning applications.
Other new and expanded Google Cloud integrations that were recently announced include:
- Serverless monitoring: Datadog now offers in-depth support for Google Cloud Run—the leading serverless compute technology on Google Cloud. With native distributed tracing across all runtimes and the ability to collect custom metrics and logs, Datadog provides deep insights into customers' Cloud Run workloads as well as fully managed APIs, queues, streams and data stores.
- Google Cloud Ready - Cloud SQL: Datadog has earned the Google Cloud Ready designation for the Google Cloud SQL integration, providing visibility into the performance and health of Cloud SQL to customers. This integration monitors throughput, memory and availability metrics in customers' databases from MySQL, PostgreSQL and SQL Server.
- Google Security Command Center: Customers can now send their Google Cloud Security Command Center findings to Datadog, including vulnerabilities, threats and errors from containers and virtual machines. Using Datadog Cloud SIEM, customers can automatically generate signals and perform investigations.
- Quick setup: Datadog's new setup experience allows Google Cloud customers to get started in just seconds so they can monitor their entire Google Cloud environment, even when there are thousands of projects. New projects can also be auto-discovered to ensure complete and seamless monitoring coverage. With out-of-the-box dashboards and real-time monitors on over 30+ Google Cloud integrations, customers can begin monitoring their services in just a few clicks.
These integrations are available now.
The Latest
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...
The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...
Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...
Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...
Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...
On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...
Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...
Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...