Dataflow Complexity is the New Normal
April 07, 2017

Pat Patterson
StreamSets

Share this

The process of wrangling big data is fraught with pitfalls for enterprises. Data-driven enterprises are buckling under the burden of gathering, analyzing and making actionable an incredible and growing amount of data flowing in from a variety of sources. It's not just the amount of big data that is confounding data-driven companies: The speed at which data must be collected and analyzed, and the variety of data types (think: IoT sensors, log files, web clickstreams) are overwhelming enterprise data architectures, which are increasingly defined by a complex tangle of big data sources and processing systems. Topping all this is the problem of data drift, the unexpected changes that consistently plague big data sources and result in corrupt and unusable data.

In short, the complexity of data in motion is growing and risks undermining the success of the modern data-driven enterprise. A recent survey of data engineers and architects, conducted by StreamSets, sought to bring some perspective to the new reality in the enterprise, leading to some interesting insights about the enterprise data landscape.

As we expected, use of streaming data has become quite common, with a high number of respondents — 72 percent — collecting this data for a variety of uses. Of these, two-thirds (48 percent) collect a combination of batch and streaming data, since real-time data requires context to provide intelligence. In contrast, 28 percent move batch data only, and 24 percent ingest streaming data only.

Survey results also showed that enterprises are gathering data from a range of sources: 61 percent collect from transactional databases, 53 percent from log files, 42 percent from analytics databases, 27 percent from clickstream data and 18 percent from IoT devices.

Moving on from their use of streaming data, the survey reveals that enterprises are also experiencing a sense of data urgency — that is, expeditious analysis of their incoming data sets. In fact, according to the survey, 56 percent of respondents say they require data analysis within minutes of receiving the data, and 16 percent require analysis within seconds. The world has certainly evolved from the daily or weekly business intelligence report to a live dashboard, or even analysis that drives automated actions like website personalization that can have a direct impact on a business' effectiveness in engaging with its customers. These requirements put extreme pressure on enterprise data architectures not necessarily designed to deliver consumption-ready data with this type of speed.

Our survey responses indicate that enterprises funnel their data into a range of destinations, making them much more complicated and expensive to manage than ever before. In addition, respondents keep some of their data on premises (58 percent), some in private clouds (48 percent) and some in public clouds (27 percent). The combination of diverse data stores and multiple deployment models is a new phenomenon we call data sprawl, and it is a key driver of dataflow complexity.

The challenges of increased dataflow complexity are here and now and, given the unprecedented growth of data each day, must be considered the new normal. With this information as a bird's-eye view of the state of data in motion, savvy enterprises will adopt technologies and solutions that will help them evolve with the big data landscape.

Pat Patterson is Community Champion at StreamSets.

Share this

The Latest

May 21, 2019

Findings of the Digital Employee Experience survey from VMware show correlation between enabling employees with a positive digital experience (i.e., device choice/flexibility, seamless access to apps, remote work capabilities) and an organization's competitive position, revenue growth and employee sentiment ...

May 20, 2019

In today's competitive landscape, businesses must have the ability and process in place to face new challenges and find ways to successfully tackle them in a proactive manner. For years, this has been placed on the shoulders of DevOps teams within IT departments. But, as automation takes over manual intervention to increase speed and efficiency, these teams are facing what we know as IT digitization. How has this changed the way companies function over the years, and what do we have to look forward to in the coming years? ...

May 16, 2019

Although the vast majority of IT organizations have implemented a broad variety of systems and tools to modernize, simplify and streamline data center operations, many are still burdened by inefficiencies, security risks and performance gaps in their IT infrastructure as well as the excessive time it takes to manage legacy infrastructure, according to the State of IT Transformation, a report from Datrium ...

May 15, 2019

When it comes to network visibility, there are a lot of discussions about packet broker technology and the various features these solutions provide to network architects and IT managers. Packet brokers allow organizations to aggregate the data required for a variety of monitoring solutions including network performance monitoring and diagnostic (NPMD) platforms and unified threat management (UTM) appliances. But, when it comes to ensuring these solutions provide the insights required by NetOps and security teams, IT can spend an exorbitant amount of time dealing with issues around adds, moves and changes. This can have a dramatic impact on budgets and tool availability. Why does this happen? ...

May 14, 2019

Data may be pouring into enterprises but IT professionals still find most of it stuck in siloed departments and weeks away from being able to drive any valued action. Coupled with the ongoing concerns over security responsiveness, IT teams have to push aside other important performance-oriented data in order to ensure security data, at least, gets prominent attention. A new survey by Ivanti shows the disconnect between enterprise departments struggling to improve operations like automation while being challenged with a siloed structure and a data onslaught ...

May 13, 2019

A subtle, deliberate shift has occurred within the software industry which, at present, only the most innovative organizations have seized upon for competitive advantage. Although primarily driven by Artificial Intelligence (AI), this transformation strikes at the core of the most pervasive IT resources including cloud computing and predictive analytics ...

May 09, 2019

When asked who is mandated with developing and delivering their organization's digital competencies, 51% of respondents say their IT departments have a leadership role. The critical question is whether IT departments are prepared to take on a leadership role in which collaborating with other functions and disseminating knowledge and digital performance data are requirements ...

May 08, 2019

The Economist Intelligence Unit just released a new study commissioned by Riverbed that explores nine digital competencies that help organizations improve their digital performance and, ultimately, achieve their objectives. Here's a brief summary of 7 key research findings you'll find covered in detail in the report ...

May 07, 2019

Today, the overall customer scenario has digitally transformed and practically there is no limitation to the ways in which the target customers can be reached. These opportunities are throwing multiple challenges for brands and enterprises, and one of the prominent ones is to ensure Omni Channel experience for customers ...

May 06, 2019

Most businesses (92 percent of respondents) see the potential value of data and 36 percent are already monetizing their data, according to the Global Data Protection Index from Dell EMC. While this acknowledgement is positive, however, most respondents are struggling to properly protect their data ...