Dataflow Complexity is the New Normal
April 07, 2017

Pat Patterson
StreamSets

Share this

The process of wrangling big data is fraught with pitfalls for enterprises. Data-driven enterprises are buckling under the burden of gathering, analyzing and making actionable an incredible and growing amount of data flowing in from a variety of sources. It's not just the amount of big data that is confounding data-driven companies: The speed at which data must be collected and analyzed, and the variety of data types (think: IoT sensors, log files, web clickstreams) are overwhelming enterprise data architectures, which are increasingly defined by a complex tangle of big data sources and processing systems. Topping all this is the problem of data drift, the unexpected changes that consistently plague big data sources and result in corrupt and unusable data.

In short, the complexity of data in motion is growing and risks undermining the success of the modern data-driven enterprise. A recent survey of data engineers and architects, conducted by StreamSets, sought to bring some perspective to the new reality in the enterprise, leading to some interesting insights about the enterprise data landscape.

As we expected, use of streaming data has become quite common, with a high number of respondents — 72 percent — collecting this data for a variety of uses. Of these, two-thirds (48 percent) collect a combination of batch and streaming data, since real-time data requires context to provide intelligence. In contrast, 28 percent move batch data only, and 24 percent ingest streaming data only.

Survey results also showed that enterprises are gathering data from a range of sources: 61 percent collect from transactional databases, 53 percent from log files, 42 percent from analytics databases, 27 percent from clickstream data and 18 percent from IoT devices.

Moving on from their use of streaming data, the survey reveals that enterprises are also experiencing a sense of data urgency — that is, expeditious analysis of their incoming data sets. In fact, according to the survey, 56 percent of respondents say they require data analysis within minutes of receiving the data, and 16 percent require analysis within seconds. The world has certainly evolved from the daily or weekly business intelligence report to a live dashboard, or even analysis that drives automated actions like website personalization that can have a direct impact on a business' effectiveness in engaging with its customers. These requirements put extreme pressure on enterprise data architectures not necessarily designed to deliver consumption-ready data with this type of speed.

Our survey responses indicate that enterprises funnel their data into a range of destinations, making them much more complicated and expensive to manage than ever before. In addition, respondents keep some of their data on premises (58 percent), some in private clouds (48 percent) and some in public clouds (27 percent). The combination of diverse data stores and multiple deployment models is a new phenomenon we call data sprawl, and it is a key driver of dataflow complexity.

The challenges of increased dataflow complexity are here and now and, given the unprecedented growth of data each day, must be considered the new normal. With this information as a bird's-eye view of the state of data in motion, savvy enterprises will adopt technologies and solutions that will help them evolve with the big data landscape.

Pat Patterson is Community Champion at StreamSets.

Share this

The Latest

March 01, 2024

As organizations continue to navigate the complexities of the digital era, which has been marked by exponential advancements in AI and technology, the strategic deployment of modern, practical applications has become indispensable for sustaining competitive advantage and realizing business goals. The Info-Tech Research Group report, Applications Priorities 2024, explores the following five initiatives for emerging and leading-edge technologies and practices that can enable IT and applications leaders to optimize their application portfolio and improve on capabilities needed to meet the ambitions of their organizations ...

February 29, 2024

Despite the growth in popularity of artificial intelligence (AI) and ML across a number of industries, there is still a huge amount of unrealized potential, with many businesses playing catch-up and still planning how ML solutions can best facilitate processes. Further progression could be limited without investment in specialized technical teams to drive development and integration ...

February 28, 2024

With over 200 streaming services to choose from, including multiple platforms featuring similar types of entertainment, users have little incentive to remain loyal to any given platform if it exhibits performance issues. Big names in streaming like Hulu, Amazon Prime and HBO Max invest thousands of hours into engineering observability and closed-loop monitoring to combat infrastructure and application issues, but smaller platforms struggle to remain competitive without access to the same resources ...

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...

February 15, 2024

In a time where we're constantly bombarded with new buzzwords and technological advancements, it can be challenging for businesses to determine what is real, what is useful, and what they truly need. Over the years, we've witnessed the rise and fall of various tech trends, such as the promises (and fears) of AI becoming sentient and replacing humans to the declaration that data is the new oil. At the end of the day, one fundamental question remains: How can companies navigate through the tech buzz and make informed decisions for their future? ...