Skip to main content

DataRobot Introduces AI Observability

DataRobot launched new AI observability functionality with real-time intervention for generative AI solutions, available across all environments including cloud, on-premise and hybrid.

This latest release provides AI leaders and teams with the tools to confidently build enterprise-grade applications, manage risk and deliver business results.

“Lack of visibility and risk are significant obstacles to reaching real business value from AI,” said Venky Veeraraghavan, Chief Product Officer, DataRobot. “We're revolutionizing AI observability with real-time intervention across diverse AI assets and environments, so leaders can safeguard projects, up-level oversight and empower teams."

This announcement brings AI observability for any AI asset and environment into the DataRobot AI Platform to deliver:

- Cross-Environment AI Observability: Gain full oversight across environments and reduce risk across your entire AI landscape with unified governance for all predictive and generative AI assets.

- Real-Time Generative AI Intervention and Moderation: Build a multilayered defense to safeguard AI applications with customized build, intervention and moderation workflows, leveraging a rich library of pre-built and configurable guards to ensure accuracy and prevent issues like prompt injections and toxicity, detect personally identifiable information (PII) and mitigate hallucinations.

- Generative AI Alerts and Diagnostics: Gain control and flexibility with customizable alert and notification policies, visually troubleshoot problems and traceback answers, and set robust multi-language diagnostics with insights for data quality checks, topic drift and more.

This new release also introduces best-in-class evaluation, testing and open source LLM support capabilities:

- Enterprise-Grade Open Source LLM Hosting: Leverage any open source foundational model including LLaMa, Hugging Face, Falcon and Mistral with DataRobot’s built-in LLM security and resources, complementing recent integrations with NVIDIA NIM inference microservices and NVIDIA NeMo Guardrails software to accelerate AI deployments for enterprises.

- LLM Evaluations, Testing and Metrics: Enhance application quality, assess LLM performance and automate testing with groundbreaking out-of-the-box synthetic test data creation, evaluation metrics and quality benchmarks.

- Advanced RAG Experimentation: Evaluate different embedding methods, chunking strategies, and vector databases to assess and identify the best RAG strategy for each use case.

All of the functionality announced today is available on cloud, on-premise, and hybrid environments.

The Latest

Gartner identified the top data and analytics (D&A) trends for 2025 that are driving the emergence of a wide range of challenges, including organizational and human issues ...

Traditional network monitoring, while valuable, often falls short in providing the context needed to truly understand network behavior. This is where observability shines. In this blog, we'll compare and contrast traditional network monitoring and observability — highlighting the benefits of this evolving approach ...

A recent Rocket Software and Foundry study found that just 28% of organizations fully leverage their mainframe data, a concerning statistic given its critical role in powering AI models, predictive analytics, and informed decision-making ...

What kind of ROI is your organization seeing on its technology investments? If your answer is "it's complicated," you're not alone. According to a recent study conducted by Apptio ... there is a disconnect between enterprise technology spending and organizations' ability to measure the results ...

In today’s data and AI driven world, enterprises across industries are utilizing AI to invent new business models, reimagine business and achieve efficiency in operations. However, enterprises may face challenges like flawed or biased AI decisions, sensitive data breaches and rising regulatory risks ...

In MEAN TIME TO INSIGHT Episode 12, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses purchasing new network observability solutions.... 

There's an image problem with mobile app security. While it's critical for highly regulated industries like financial services, it is often overlooked in others. This usually comes down to development priorities, which typically fall into three categories: user experience, app performance, and app security. When dealing with finite resources such as time, shifting priorities, and team skill sets, engineering teams often have to prioritize one over the others. Usually, security is the odd man out ...

Image
Guardsquare

IT outages, caused by poor-quality software updates, are no longer rare incidents but rather frequent occurrences, directly impacting over half of US consumers. According to the 2024 Software Failure Sentiment Report from Harness, many now equate these failures to critical public health crises ...

In just a few months, Google will again head to Washington DC and meet with the government for a two-week remedy trial to cement the fate of what happens to Chrome and its search business in the face of ongoing antitrust court case(s). Or, Google may proactively decide to make changes, putting the power in its hands to outline a suitable remedy. Regardless of the outcome, one thing is sure: there will be far more implications for AI than just a shift in Google's Search business ... 

Image
Chrome

In today's fast-paced digital world, Application Performance Monitoring (APM) is crucial for maintaining the health of an organization's digital ecosystem. However, the complexities of modern IT environments, including distributed architectures, hybrid clouds, and dynamic workloads, present significant challenges ... This blog explores the challenges of implementing application performance monitoring (APM) and offers strategies for overcoming them ...

DataRobot Introduces AI Observability

DataRobot launched new AI observability functionality with real-time intervention for generative AI solutions, available across all environments including cloud, on-premise and hybrid.

This latest release provides AI leaders and teams with the tools to confidently build enterprise-grade applications, manage risk and deliver business results.

“Lack of visibility and risk are significant obstacles to reaching real business value from AI,” said Venky Veeraraghavan, Chief Product Officer, DataRobot. “We're revolutionizing AI observability with real-time intervention across diverse AI assets and environments, so leaders can safeguard projects, up-level oversight and empower teams."

This announcement brings AI observability for any AI asset and environment into the DataRobot AI Platform to deliver:

- Cross-Environment AI Observability: Gain full oversight across environments and reduce risk across your entire AI landscape with unified governance for all predictive and generative AI assets.

- Real-Time Generative AI Intervention and Moderation: Build a multilayered defense to safeguard AI applications with customized build, intervention and moderation workflows, leveraging a rich library of pre-built and configurable guards to ensure accuracy and prevent issues like prompt injections and toxicity, detect personally identifiable information (PII) and mitigate hallucinations.

- Generative AI Alerts and Diagnostics: Gain control and flexibility with customizable alert and notification policies, visually troubleshoot problems and traceback answers, and set robust multi-language diagnostics with insights for data quality checks, topic drift and more.

This new release also introduces best-in-class evaluation, testing and open source LLM support capabilities:

- Enterprise-Grade Open Source LLM Hosting: Leverage any open source foundational model including LLaMa, Hugging Face, Falcon and Mistral with DataRobot’s built-in LLM security and resources, complementing recent integrations with NVIDIA NIM inference microservices and NVIDIA NeMo Guardrails software to accelerate AI deployments for enterprises.

- LLM Evaluations, Testing and Metrics: Enhance application quality, assess LLM performance and automate testing with groundbreaking out-of-the-box synthetic test data creation, evaluation metrics and quality benchmarks.

- Advanced RAG Experimentation: Evaluate different embedding methods, chunking strategies, and vector databases to assess and identify the best RAG strategy for each use case.

All of the functionality announced today is available on cloud, on-premise, and hybrid environments.

The Latest

Gartner identified the top data and analytics (D&A) trends for 2025 that are driving the emergence of a wide range of challenges, including organizational and human issues ...

Traditional network monitoring, while valuable, often falls short in providing the context needed to truly understand network behavior. This is where observability shines. In this blog, we'll compare and contrast traditional network monitoring and observability — highlighting the benefits of this evolving approach ...

A recent Rocket Software and Foundry study found that just 28% of organizations fully leverage their mainframe data, a concerning statistic given its critical role in powering AI models, predictive analytics, and informed decision-making ...

What kind of ROI is your organization seeing on its technology investments? If your answer is "it's complicated," you're not alone. According to a recent study conducted by Apptio ... there is a disconnect between enterprise technology spending and organizations' ability to measure the results ...

In today’s data and AI driven world, enterprises across industries are utilizing AI to invent new business models, reimagine business and achieve efficiency in operations. However, enterprises may face challenges like flawed or biased AI decisions, sensitive data breaches and rising regulatory risks ...

In MEAN TIME TO INSIGHT Episode 12, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses purchasing new network observability solutions.... 

There's an image problem with mobile app security. While it's critical for highly regulated industries like financial services, it is often overlooked in others. This usually comes down to development priorities, which typically fall into three categories: user experience, app performance, and app security. When dealing with finite resources such as time, shifting priorities, and team skill sets, engineering teams often have to prioritize one over the others. Usually, security is the odd man out ...

Image
Guardsquare

IT outages, caused by poor-quality software updates, are no longer rare incidents but rather frequent occurrences, directly impacting over half of US consumers. According to the 2024 Software Failure Sentiment Report from Harness, many now equate these failures to critical public health crises ...

In just a few months, Google will again head to Washington DC and meet with the government for a two-week remedy trial to cement the fate of what happens to Chrome and its search business in the face of ongoing antitrust court case(s). Or, Google may proactively decide to make changes, putting the power in its hands to outline a suitable remedy. Regardless of the outcome, one thing is sure: there will be far more implications for AI than just a shift in Google's Search business ... 

Image
Chrome

In today's fast-paced digital world, Application Performance Monitoring (APM) is crucial for maintaining the health of an organization's digital ecosystem. However, the complexities of modern IT environments, including distributed architectures, hybrid clouds, and dynamic workloads, present significant challenges ... This blog explores the challenges of implementing application performance monitoring (APM) and offers strategies for overcoming them ...