We are in an era where the rate of technology adoption across nearly all industries has increased significantly in recent years. Growing enterprise complexity has increased demand for new models for business transformation in the form of deployment, scale, and change acceleration. This renewed acceleration of technology adoption is redefining enterprise IT Operations (ITOps).
The increase of instrumentation, monitoring and integrations has increased the amount of data generated by organizations — which created two challenges:
1. making sense of it has become difficult with standard methods.
2. It has also increased noise in the ecosystem, which is leading to high false alerts.
These have led to the need and eventual creation of a new market category within the space of enterprise IT called "AIOps" — the application of Artificial Intelligence (AI) for IT operations.
AIOps is rapidly becoming a de-facto option for enterprises' IT strategies, with nearly immeasurable benefits to be provided. However, AIOps is still a relatively new discipline and misconceptions surrounding the technology's capabilities and uses have caused bottlenecks and roadblocks in its widespread adoption.
So, what should organizations expect from AIOps?
How can organizations that want to digitally transform their IT pursue AIOps for maximum benefit?
What is AIOps? Why AIOps?
First, let's see exactly what AIOps is and why it's critical in today's enterprise IT environment. Recent digital transformation efforts across industries have redefined enterprise IT Operations and led to the emergence of AIOps.
AIOps refers to solutions that leverage AI and Machine Learning (ML) to acquire enterprise IT data, analyze it and take required actions for autonomous IT Operations. It helps transform enterprise IT operations from being slow and reactive to agile and proactive, thus addressing many key IT operational and business challenges.
Automating IT operations enables easy deployment of modern and agile IT systems that support enterprise-wide digital transformation efforts, such as cloud migration and automation enablement. Traditional IT management solutions that involve manual efforts for tedious and repeatable processes cannot keep up with the pace of rapid enterprise IT changes and leaves IT teams facing challenges surrounding infrastructure complexities, long delays in isolating and resolving IT faults, and inconsistent and variable quality of operations. Deploying AIOps helps to overcome these challenges by acting as an intelligent way to assess enterprise system behavior and detect anomalies, prescribe solutions and proactively take action to resolve IT incidents and prevent disruptions in IT operations.
With the increase in scale of enterprise operations, complexity and accelerating change in technology footprints, i.e., the landscape of digital systems across an organization, AIOps is not just an option, but a necessity. The volume and complexity of data generated by, and coming into, any given organization can be quite voluminous and overwhelming. Handling this with traditional IT systems can be quite inadequate. Making sense from this huge amount of information calls for advanced AI/ML based analytics/intelligence layer.
Also, as data might come from correlated sources it can lead to duplicated work and siloed views if handled through a traditional and siloed IT operations approach. This is because it lacks the ability to provide a correlated enterprise-wide view of digital systems and how they interact across business domains. So, it can never match the scale of this data and also cannot reap the full benefits of this data/information.
Simply making sense of the data/information won't solve the problem, it is also necessary to act on the inference drawn from this data, and this is hugely important. Intelligent automation becomes a necessity here. Hence, the need for a highly intelligent, hyper automated and scalable solution that can combine big data, observability, enterprise context, AI/ML based analytics and intelligent automation to help gain full-stack visibility across hybrid environments, understand normal behavior, understand root causes of issues, fix problems, predict failures and their direct impact on IT and business. Thus, providing resilient and efficient IT operations cross organizations — and the answer lies in "AIOps."
Go to What Is the Deal with AIOps? - Part 2, outlining what to keep in mind when considering DevOps, and what results can be expected from AIOps.
The Latest
To achieve maximum availability, IT leaders must employ domain-agnostic solutions that identify and escalate issues across all telemetry points. These technologies, which we refer to as Artificial Intelligence for IT Operations, create convergence — in other words, they provide IT and DevOps teams with the full picture of event management and downtime ...
APMdigest and leading IT research firm Enterprise Management Associates (EMA) are partnering to bring you the EMA-APMdigest Podcast, a new podcast focused on the latest technologies impacting IT Operations. In Episode 2 - Part 1 Pete Goldin, Editor and Publisher of APMdigest, discusses Network Observability with Shamus McGillicuddy, Vice President of Research, Network Infrastructure and Operations, at EMA ...
CIOs have stepped into the role of digital leader and strategic advisor, according to the 2023 Global CIO Survey from Logicalis ...
Synthetic monitoring is crucial to deploy code with confidence as catching bugs with E2E tests on staging is becoming increasingly difficult. It isn't trivial to provide realistic staging systems, especially because today's apps are intertwined with many third-party APIs ...
Recent EMA field research found that ServiceOps is either an active effort or a formal initiative in 78% of the organizations represented by a global panel of 400+ IT leaders. It is relatively early but gaining momentum across industries and organizations of all sizes globally ...
Managing availability and performance within SAP environments has long been a challenge for IT teams. But as IT environments grow more complex and dynamic, and the speed of innovation in almost every industry continues to accelerate, this situation is becoming a whole lot worse ...
Harnessing the power of network-derived intelligence and insights is critical in detecting today's increasingly sophisticated security threats across hybrid and multi-cloud infrastructure, according to a new research study from IDC ...
Recent research suggests that many organizations are paying for more software than they need. If organizations are looking to reduce IT spend, leaders should take a closer look at the tools being offered to employees, as not all software is essential ...
Organizations are challenged by tool sprawl and data source overload, according to the Grafana Labs Observability Survey 2023, with 52% of respondents reporting that their companies use 6 or more observability tools, including 11% that use 16 or more.
An array of tools purport to maintain availability — the trick is sorting through the noise to find the right one. Let us discuss why availability is so important and then unpack the ROI of deploying Artificial Intelligence for IT Operations (AIOps) during an economic downturn ...