deepset Cloud, a large language model (LLM) platform, is providing insights into the precision and fidelity of responses from LLM generative AI through the Groundedness Observability Dashboard.
With the 01/2024 release, the Groundedness Observability Dashboard displays trend data for how well generative AI responses are grounded in the source documents. This feature provides a quantifiable score to measure the factuality of an LLM's output. The results serve as a guide for developers in modifying their RAG setup, fine tuning models, and altering prompts to improve accuracy and reliability of generated responses. Simplified insights into what works enables users to track how well the model can use the provided data to answer queries in a reliable manner. When tracked over time, this allows for comparisons with other widely-available LLM platforms.
deepset Cloud’s Source Reference Prediction generative response annotation is also now generally available. Response Annotation adds academic-style citations to the LLM-generated answer. Those citations reference the respective document on which a statement is based. Users can then review the source material in order to fact-check generated answers or gain a better understanding of the source data in its original context.
The combination of deepset Cloud’s Groundedness Dashboard and Source Reference Prediction gives organizations greater confidence in the quality of the responses in their LLM applications, and provides visibility when an application’s accuracy does not meet requirements.
Groundedness isn't just a useful metric for measuring the faithfulness of your LLM-generated answers to a knowledge base. It can also be used as a proxy to identify the ideal hyperparameters for your retrieval step. Optimizing the number of documents embedded in the query can reduce your LLM costs by a significant factor.
These new features emphasize deepset’s commitment to building a robust trust layer within generative AI applications. The new features effectively detect hallucinations and provide benchmarking tools, allowing users to make informed decisions about the reliability of their AI models.
These features of deepset Cloud are in General Availability.
The Latest
According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...
Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...
IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...
Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ...
In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...
In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...
In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...
In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...