Dispelling 3 Common Network Automation Myths
May 22, 2023

Rich Martin

Share this

As with any journey we embark on, before we get started, we often think about what we need to begin the journey, what we may need along the way and how long it will take us. When it comes to the network automation journey, it really is no different.

Before network engineers even begin the automation process, they tend to start with preconceived notions that oftentimes, if acted upon, can hinder the process. To prevent that from happening, it's important to identify and dispel a few common misconceptions currently out there and how networking teams can overcome them. So, let's address the three most common network automation myths.

Myth #1: A SINGLE Source of Truth & Standardized Data Are Prerequisites for Meaningful Automation

Most network engineers simply don't trust the systems that store network data because of the many failed attempts they've experienced trying to maintain accurate information. Why do these systems lack accurate data? Simply put, the spreadsheets and databases tracking the data are "offline," which means they are "in" the configuration change process but "outside" the process of requiring updates after all changes.

Secondly, the updating processes are human-centric and oftentimes managed by inexperienced engineers during maintenance windows — which typically fall between the hours of 12am-5am — or they're the result of emergency fixes performed on the fly without timely documentation. This lack of timely data updates erodes confidence that these systems are accurate.

This is where the role of DDI platforms comes in. DDI is a unified solution that combines three core networking elements — domain name system (DNS), dynamic host configuration protocol (DHCP), and IP address management (IPAM). These platforms serve as reservation and tracking systems for IP addresses and DNS records which must be unique and accurate for the network to behave properly. Despite this, what can still happen is the DDI data and the actual network configurations can still get out of sync, providing incorrect DDI data.

Some tools were built to put automation on top of a specific source of SoT, tightly coupling automation with Source of Truth (SoT) data within that database. However, there are other sources of truth within the network that the automation code doesn't operate on or integrate with, leading to incomplete or incorrect data and the automation is limited to automating tasks and not an entire process. I believe the SoT is the configuration of the network itself — not an offline copy of the system data that may or may not reflect updated information.

Source of Truth is important to the automation journey but having a single source of truth can quickly lead to inaccuracy. So how do you decide when to apply SoT and when not to apply it?

First, it's always a good idea to apply a source of truth for parts of the network that aren't programmable, for example, port assignments.

Second, some programmable network infrastructure is the SoT, for example, anything in the cloud and SD-WAN. Amazon Web Services (AWS) is the source of truth for AWS. A SD-WAN controller is the source of truth for SD-WAN. These systems are programmable and always accurate which means you don't need an offline copy. Copies are the source of discrepancies which drive error in automation. Multiple sources of truth and "fresh" data will enable better automation.

Myth #2: Network Scripts as a Strategy

When network engineers identify activities they want to automate, they usually turn to network "scripting," since many don't consider themselves developers. Two platforms have become the go-to platforms for network scripting — Python and Ansible.

Python, which has been around since 2010, has become the default programming language for network operations and has many network-friendly libraries.

Ansible has also become a crowd favorite for two reasons: first, it has simplified/limited the functionality towards automation and leverages YAML as a description language for automation. Secondly, it has broad support for command line interfaces (CLIs) for most network vendors.

However, both options have limitations. Ansible is often only viable for task-based automations. It's not a full-fledged programming language like Python because it still requires a knowledge of YAML and how it is applied in Ansible Playbook.

It also isn't truly usable at scale. Ansible tries to be simpler than writing code, but this comes at the expense of some serious limitations with respect to integration and scale. For example, if you're stringing multiple playbooks together and exchanging data between them, custom code is required, which brings you back to learning Python and using a programming language.

Whether you use Ansible or Python to fulfill a script strategy, the fundamental challenge is that there is very little collaboration and awareness of everyone's different scripts. So, what ends up happening is a lack of awareness of who has what scripts and how to use them, and very little version control to ensure people are using the correct version.

Myth #3: Mapping and Modeling of the Network Are Needed Before Automating: If I Can't See It, I Can't Automate It?

Oftentimes, network engineers believe modeling and/or mapping the entire network is a prerequisite before beginning the automation journey. However, this isn't a feasible plan, especially when we're talking about larger networks with many devices.

Why isn't mapping the network feasible?

What many don't realize is that the process of completely mapping an entire network can take several months. When mapping the network, changes are constant, resulting in a process that never really ends before automation can begin. Additionally, requiring modeling of different network devices as a prerequisite to automation comes with some severe downsides.

First, your network automation software vendor must support a particular network vendor, model, and operating system version in their application before any automation can be done. So right from the start, network teams are faced with only being allowed to buy software based on what it's able to support, or buying something that hasn't been modeled and simply going without automation until the vendor supports it.

Also, network vendors who use modeling as the basis for automation must create models for every CLI command and feature supported in the OS. This requires time and resources which forces the vendors who model like this to support a very limited number of vendors/models/operating systems.

While mapping and modeling are important to the automation journey, they should not be viewed as prerequisites, simply because doing so can waste too much time. Rather, both mapping and modeling should be seen to support automation.

At the end of the day, we see more enterprises embracing network automation because of the efficiencies it delivers. But if you're going to automate your infrastructure, your automation solution will need to gather authoritative information using multiple sources of truth.

With today's programmable networks, relying on a single source of truth is based on a flawed assumption that we can always have a synchronized database. With network automation, organizations can adopt a distributed source of truth solution by enabling the multiple systems of record, and their collective data, to act as the source of truth.

Rich Martin is Director of Technical Marketing at Itential
Share this

The Latest

May 25, 2023

Developers need a tool that can be portable and vendor agnostic, given the advent of microservices. It may be clear an issue is occurring; what may not be clear is if it's part of a distributed system or the app itself. Enter OpenTelemetry, commonly referred to as OTel, an open-source framework that provides a standardized way of collecting and exporting telemetry data (logs, metrics, and traces) from cloud-native software ...

May 24, 2023

As SLOs grow in popularity their usage is becoming more mature. For example, 82% of respondents intend to increase their use of SLOs, and 96% have mapped SLOs directly to their business operations or already have a plan to, according to The State of Service Level Objectives 2023 from Nobl9 ...

May 23, 2023

Observability has matured beyond its early adopter position and is now foundational for modern enterprises to achieve full visibility into today's complex technology environments, according to The State of Observability 2023, a report released by Splunk in collaboration with Enterprise Strategy Group ...

May 22, 2023

Before network engineers even begin the automation process, they tend to start with preconceived notions that oftentimes, if acted upon, can hinder the process. To prevent that from happening, it's important to identify and dispel a few common misconceptions currently out there and how networking teams can overcome them. So, let's address the three most common network automation myths ...

May 18, 2023

Many IT organizations apply AI/ML and AIOps technology across domains, correlating insights from the various layers of IT infrastructure and operations. However, Enterprise Management Associates (EMA) has observed significant interest in applying these AI technologies narrowly to network management, according to a new research report, titled AI-Driven Networks: Leveling Up Network Management with AI/ML and AIOps ...

May 17, 2023

When it comes to system outages, AIOps solutions with the right foundation can help reduce the blame game so the right teams can spend valuable time restoring the impacted services rather than improving their MTTI score (mean time to innocence). In fact, much of today's innovation around ChatGPT-style algorithms can be used to significantly improve the triage process and user experience ...

May 16, 2023

Gartner identified the top 10 data and analytics (D&A) trends for 2023 that can guide D&A leaders to create new sources of value by anticipating change and transforming extreme uncertainty into new business opportunities ...

May 15, 2023

The only way for companies to stay competitive is to modernize applications, yet there's no denying that bringing apps into the modern era can be challenging ... Let's look at a few ways to modernize applications and consider what new obstacles and opportunities 2023 presents ...

May 11, 2023
Applications can be subjected to high traffic on certain days, which, if not taken into account, can lead to unpredictable outcomes and customer dissatisfaction. These may include slow loading speeds, downtime, and unpredictable outcomes, among others ... Hence, applications must be tested for load thresholds to improve performance. Businesses that ignore load performance testing and fail to continually scale these applications leave themselves open to service outages, customer dissatisfaction, and monetary losses ...
May 10, 2023

As online penetration grows, retailers' profits are shrinking — with the cost of serving customers anytime, anywhere, at any speed not bringing in enough topline growth to best monetize even existing investments in technology, systems, infrastructure, and people, let alone new investments, according to Digital-First Retail: Turning Profit Destruction into Customer and Shareholder Value, a new report from AlixPartners and World Retail Congress ...