Skip to main content

Driving Application Modernization with Generative AI

David Lavin
Pre-Sales Solution Architect
Verinext

In the rapidly evolving landscape of technology, modernizing legacy application code stands as an important but difficult challenge for enterprise IT organizations. As businesses strive to stay competitive, the pressure to update outdated systems each year becomes more important as well as more difficult and, potentially, more expensive. These transitions are fraught with complexities, ranging from the intricacies of integrating new technologies with old, preserving the integrity and functionality of existing systems, to addressing the skills gap within teams accustomed to supporting the legacy systems.

One of the key drivers today for modernizing legacy applications is to leverage the emerging capabilities of Artificial Intelligence (AI). Many companies are finding it difficult to truly integrate these new technologies into their existing business processes because of their outdated systems. It is ironic then that the very technology that is driving some of the need for modernization has the potential to be the technology that makes the modernization of these legacy systems more attainable. Although not yet fully realized, these tools have the promise to greatly accelerate how we can deliver such application modernization.

In this blog, we will look at how Generative AI (GenAI) services are emerging in ways that can help reduce the effort and overall risk inherent in these initiatives.

Understanding Your Legacy Application Environment

Many legacy systems either have outdated documentation or lack documentation at all. Often much of the knowledge on how the system operates exists only within the few individuals that have been working on the system over many years. Some of these individuals may no longer be with the organization, leaving behind opaque systems that teams are fearful to touch. GenAI can generate documentation from the legacy code itself, describing what each class, script, or other component is doing in natural language. While such documentation does not remove the need for developers to become familiar with the codebase, it can provide an overall guide for understanding the application components, shortening the learning curve for new staff.

AI tools can also analyze application code to understand the dependencies within the system. This can allow developers to have greater confidence when they go to make changes or upgrades and avoid unintended consequences. This information is highly valuable in planning modernization transformations as it can be used in understanding the right component segmentation for any initiative.

Supporting Incremental Modernization

These services can also make recommendations for incremental improvements to legacy application code. This can include suggesting refactoring changes that improve its structure and performance without altering its external behavior, making the application more efficient. Or identifying and removing dead code, reducing complexity and improving the maintainability of the application.

Additionally, GenAI tools can be used to help create APIs that enable the functions of these older systems, which in many cases were never intended to be externally integrated, to be leveraged by newer applications within the environment. Such techniques for wrapping of legacy applications allows for them to be encapsulated away from the other systems, which enables less impacts to the overall enterprise architecture as these systems are modernized.

Enabling Transformation

And when it's finally time to do a complete transformation of the legacy application, GenAI tools have the potential to be a key resource to application architects as they map out the new architecture. Through analysis of the existing codebase, AI may be able to suggest the right modern architecture approaches for the system. And can then help automate the conversion into the new architecture and technology set (programming language, database, etc.).

These services can also aid with the operational aspects of such a transformation. GenAI can automate the migration of data from legacy databases to the target data platform. It can also transform data formats and structures to be compatible with new application requirements, ensuring data integrity and minimizing data loss. These models can also help in testing by generating automated scripts and test data to help drive a more efficient regression testing and overall Quality Assurance process.

Are We There Yet?

With the overabundance of hype around Generative AI, it's easy to view many of the emerging capabilities with skepticism. Many of these promises seem too good to be true and some of them are — for now. Most of these capabilities are here today in one form or another, but the day where we can simply turn a legacy application over to a GenAI tool for modernization is still in the future. But these tools can help increase the velocity of teams that understand when and how to carefully leverage them in these initiatives. And all technology-focused organizations need to be keeping up with the rapidly evolving landscape of AI-assisted software development in order to keep their businesses competitive.

As with everything else it is touching, AI has the potential to significantly alter how we approach the modernization of enterprise systems. Whether using these tools to understand the existing systems, refactor legacy services, or enabling the full application transformation, GenAI technologies can reduce the time, cost, and risk associated with application modernization initiatives.

David Lavin is a Pre-Sales Solution Architect at Verinext

The Latest

E-commerce is set to skyrocket with a 9% rise over the next few years ... To thrive in this competitive environment, retailers must identify digital resilience as their top priority. In a world where savvy shoppers expect 24/7 access to online deals and experiences, any unexpected downtime to digital services can lead to significant financial losses, damage to brand reputation, abandoned carts with designer shoes, and additional issues ...

Efficiency is a highly-desirable objective in business ... We're seeing this scenario play out in enterprises around the world as they continue to struggle with infrastructures and remote work models with an eye toward operational efficiencies. In contrast to that goal, a recent Broadcom survey of global IT and network professionals found widespread adoption of these strategies is making the network more complex and hampering observability, leading to uptime, performance and security issues. Let's look more closely at these challenges ...

Image
Broadcom

The 2025 Catchpoint SRE Report dives into the forces transforming the SRE landscape, exploring both the challenges and opportunities ahead. Let's break down the key findings and what they mean for SRE professionals and the businesses relying on them ...

Image
Catchpoint

The pressure on IT teams has never been greater. As data environments grow increasingly complex, resource shortages are emerging as a major obstacle for IT leaders striving to meet the demands of modern infrastructure management ... According to DataStrike's newly released 2025 Data Infrastructure Survey Report, more than half (54%) of IT leaders cite resource limitations as a top challenge, highlighting a growing trend toward outsourcing as a solution ...

Image
Datastrike

Gartner revealed its top strategic predictions for 2025 and beyond. Gartner's top predictions explore how generative AI (GenAI) is affecting areas where most would assume only humans can have lasting impact ...

The adoption of artificial intelligence (AI) is accelerating across the telecoms industry, with 88% of fixed broadband service providers now investigating or trialing AI automation to enhance their fixed broadband services, according to new research from Incognito Software Systems and Omdia ...

 

AWS is a cloud-based computing platform known for its reliability, scalability, and flexibility. However, as helpful as its comprehensive infrastructure is, disparate elements and numerous siloed components make it difficult for admins to visualize the cloud performance in detail. It requires meticulous monitoring techniques and deep visibility to understand cloud performance and analyze operational efficiency in detail to ensure seamless cloud operations ...

Imagine a future where software, once a complex obstacle, becomes a natural extension of daily workflow — an intuitive, seamless experience that maximizes productivity and efficiency. This future is no longer a distant vision but a reality being crafted by the transformative power of Artificial Intelligence ...

Enterprise data sprawl already challenges companies' ability to protect and back up their data. Much of this information is never fully secured, leaving organizations vulnerable. Now, as GenAI platforms emerge as yet another environment where enterprise data is consumed, transformed, and created, this fragmentation is set to intensify ...

Image
Crashplan

OpenTelemetry (OTel) has revolutionized the way we approach observability by standardizing the collection of telemetry data ... Here are five myths — and truths — to help elevate your OTel integration by harnessing the untapped power of logs ...

Driving Application Modernization with Generative AI

David Lavin
Pre-Sales Solution Architect
Verinext

In the rapidly evolving landscape of technology, modernizing legacy application code stands as an important but difficult challenge for enterprise IT organizations. As businesses strive to stay competitive, the pressure to update outdated systems each year becomes more important as well as more difficult and, potentially, more expensive. These transitions are fraught with complexities, ranging from the intricacies of integrating new technologies with old, preserving the integrity and functionality of existing systems, to addressing the skills gap within teams accustomed to supporting the legacy systems.

One of the key drivers today for modernizing legacy applications is to leverage the emerging capabilities of Artificial Intelligence (AI). Many companies are finding it difficult to truly integrate these new technologies into their existing business processes because of their outdated systems. It is ironic then that the very technology that is driving some of the need for modernization has the potential to be the technology that makes the modernization of these legacy systems more attainable. Although not yet fully realized, these tools have the promise to greatly accelerate how we can deliver such application modernization.

In this blog, we will look at how Generative AI (GenAI) services are emerging in ways that can help reduce the effort and overall risk inherent in these initiatives.

Understanding Your Legacy Application Environment

Many legacy systems either have outdated documentation or lack documentation at all. Often much of the knowledge on how the system operates exists only within the few individuals that have been working on the system over many years. Some of these individuals may no longer be with the organization, leaving behind opaque systems that teams are fearful to touch. GenAI can generate documentation from the legacy code itself, describing what each class, script, or other component is doing in natural language. While such documentation does not remove the need for developers to become familiar with the codebase, it can provide an overall guide for understanding the application components, shortening the learning curve for new staff.

AI tools can also analyze application code to understand the dependencies within the system. This can allow developers to have greater confidence when they go to make changes or upgrades and avoid unintended consequences. This information is highly valuable in planning modernization transformations as it can be used in understanding the right component segmentation for any initiative.

Supporting Incremental Modernization

These services can also make recommendations for incremental improvements to legacy application code. This can include suggesting refactoring changes that improve its structure and performance without altering its external behavior, making the application more efficient. Or identifying and removing dead code, reducing complexity and improving the maintainability of the application.

Additionally, GenAI tools can be used to help create APIs that enable the functions of these older systems, which in many cases were never intended to be externally integrated, to be leveraged by newer applications within the environment. Such techniques for wrapping of legacy applications allows for them to be encapsulated away from the other systems, which enables less impacts to the overall enterprise architecture as these systems are modernized.

Enabling Transformation

And when it's finally time to do a complete transformation of the legacy application, GenAI tools have the potential to be a key resource to application architects as they map out the new architecture. Through analysis of the existing codebase, AI may be able to suggest the right modern architecture approaches for the system. And can then help automate the conversion into the new architecture and technology set (programming language, database, etc.).

These services can also aid with the operational aspects of such a transformation. GenAI can automate the migration of data from legacy databases to the target data platform. It can also transform data formats and structures to be compatible with new application requirements, ensuring data integrity and minimizing data loss. These models can also help in testing by generating automated scripts and test data to help drive a more efficient regression testing and overall Quality Assurance process.

Are We There Yet?

With the overabundance of hype around Generative AI, it's easy to view many of the emerging capabilities with skepticism. Many of these promises seem too good to be true and some of them are — for now. Most of these capabilities are here today in one form or another, but the day where we can simply turn a legacy application over to a GenAI tool for modernization is still in the future. But these tools can help increase the velocity of teams that understand when and how to carefully leverage them in these initiatives. And all technology-focused organizations need to be keeping up with the rapidly evolving landscape of AI-assisted software development in order to keep their businesses competitive.

As with everything else it is touching, AI has the potential to significantly alter how we approach the modernization of enterprise systems. Whether using these tools to understand the existing systems, refactor legacy services, or enabling the full application transformation, GenAI technologies can reduce the time, cost, and risk associated with application modernization initiatives.

David Lavin is a Pre-Sales Solution Architect at Verinext

The Latest

E-commerce is set to skyrocket with a 9% rise over the next few years ... To thrive in this competitive environment, retailers must identify digital resilience as their top priority. In a world where savvy shoppers expect 24/7 access to online deals and experiences, any unexpected downtime to digital services can lead to significant financial losses, damage to brand reputation, abandoned carts with designer shoes, and additional issues ...

Efficiency is a highly-desirable objective in business ... We're seeing this scenario play out in enterprises around the world as they continue to struggle with infrastructures and remote work models with an eye toward operational efficiencies. In contrast to that goal, a recent Broadcom survey of global IT and network professionals found widespread adoption of these strategies is making the network more complex and hampering observability, leading to uptime, performance and security issues. Let's look more closely at these challenges ...

Image
Broadcom

The 2025 Catchpoint SRE Report dives into the forces transforming the SRE landscape, exploring both the challenges and opportunities ahead. Let's break down the key findings and what they mean for SRE professionals and the businesses relying on them ...

Image
Catchpoint

The pressure on IT teams has never been greater. As data environments grow increasingly complex, resource shortages are emerging as a major obstacle for IT leaders striving to meet the demands of modern infrastructure management ... According to DataStrike's newly released 2025 Data Infrastructure Survey Report, more than half (54%) of IT leaders cite resource limitations as a top challenge, highlighting a growing trend toward outsourcing as a solution ...

Image
Datastrike

Gartner revealed its top strategic predictions for 2025 and beyond. Gartner's top predictions explore how generative AI (GenAI) is affecting areas where most would assume only humans can have lasting impact ...

The adoption of artificial intelligence (AI) is accelerating across the telecoms industry, with 88% of fixed broadband service providers now investigating or trialing AI automation to enhance their fixed broadband services, according to new research from Incognito Software Systems and Omdia ...

 

AWS is a cloud-based computing platform known for its reliability, scalability, and flexibility. However, as helpful as its comprehensive infrastructure is, disparate elements and numerous siloed components make it difficult for admins to visualize the cloud performance in detail. It requires meticulous monitoring techniques and deep visibility to understand cloud performance and analyze operational efficiency in detail to ensure seamless cloud operations ...

Imagine a future where software, once a complex obstacle, becomes a natural extension of daily workflow — an intuitive, seamless experience that maximizes productivity and efficiency. This future is no longer a distant vision but a reality being crafted by the transformative power of Artificial Intelligence ...

Enterprise data sprawl already challenges companies' ability to protect and back up their data. Much of this information is never fully secured, leaving organizations vulnerable. Now, as GenAI platforms emerge as yet another environment where enterprise data is consumed, transformed, and created, this fragmentation is set to intensify ...

Image
Crashplan

OpenTelemetry (OTel) has revolutionized the way we approach observability by standardizing the collection of telemetry data ... Here are five myths — and truths — to help elevate your OTel integration by harnessing the untapped power of logs ...