Skip to main content

Elastic Announces First-of-its-kind Search AI Lake to Scale Low Latency Search

Elastic announced Search AI Lake, a first-of-its-kind, cloud-native architecture optimized for real-time, low-latency applications including search, retrieval augmented generation (RAG), observability and security.

The Search AI Lake also powers the new Elastic Cloud Serverless offering, which removes operational overhead to automatically scale and manage workloads.

With the expansive storage capacity of a data lake and the powerful search and AI relevance capabilities of Elasticsearch, Search AI Lake delivers low-latency query performance without sacrificing scalability, relevance, or affordability.

Search AI Lake benefits include:

- Boundless scale, decoupled compute and storage: Fully decoupling storage and compute enables effortless scalability and reliability using object storage, dynamic caching supports high throughput, frequent updates, and interactive querying of large data volumes. This eliminates the need for replicating indexing operations across multiple servers, cutting indexing costs and reducing data duplication.

- Real-time, low latency: Multiple enhancements maintain excellent query performance even when the data is safely persisted on object stores. This includes the introduction of smart caching and segment-level query parallelization to reduce latency by enabling faster data retrieval and allowing more requests to be processed quickly.

- Independently scale indexing and querying: By separating indexing and search at a low level, the platform can independently and automatically scale to meet the needs of a wide range of workloads.

- GAI optimized native inference and vector search: Users can leverage a native suite of powerful AI relevance, retrieval, and reranking capabilities, including a native vector database fully integrated into Lucene, open inference APIs, semantic search, and first- and third-party transformer models, which work seamlessly with the array of search functionalities.

- Powerful query and analytics: Elasticsearch’s powerful query language, ES|QL, is built in to transform, enrich, and simplify investigations with fast concurrent processing irrespective of data source and structure. Full support for precise and efficient full-text search and time series analytics to identify patterns in geospatial analysis are also included.

- Native machine learning: Users can build, deploy, and optimize machine learning directly on all data for superior predictions. For security analysts, prebuilt threat detection rules can easily run across historical information, even years back. Similarly, unsupervised models perform near-real-time anomaly detections retrospectively on data spanning much longer time periods than other SIEM platforms.

- Truly distributed - cross-region, cloud, or hybrid: Query data in the region or data center where it was generated from one interface. Cross-cluster search (CCS) avoids the requirement to centralize or synchronize. It means within seconds of being ingested, any data format is normalized, indexed, and optimized to allow for extremely fast querying and analytics. All while reducing data transfer and storage costs.

Search AI Lake powers a new Elastic Cloud Serverless offering that harnesses the innovative architecture’s speed and scale to remove operational overhead so users can quickly and seamlessly start and scale workloads. All operations, from monitoring and backup to configuration and sizing, are managed by Elastic – users just bring their data and choose Elasticsearch, Elastic Observability, or Elastic Security on Serverless.

“To meet the requirements of more AI and real-time workloads, it’s clear a new architecture is needed that can handle compute and storage at enterprise speed and scale – not one or the other,” said Ken Exner, chief product officer at Elastic. “Search AI Lake pours cold water on traditional data lakes that have tried to fill this need but are simply incapable of handling real-time applications. This new architecture and the serverless projects it powers are precisely what’s needed for the search, observability, and security workloads of tomorrow.”

Search AI Lake and Elastic Cloud Serverless are currently available in tech preview.

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Elastic Announces First-of-its-kind Search AI Lake to Scale Low Latency Search

Elastic announced Search AI Lake, a first-of-its-kind, cloud-native architecture optimized for real-time, low-latency applications including search, retrieval augmented generation (RAG), observability and security.

The Search AI Lake also powers the new Elastic Cloud Serverless offering, which removes operational overhead to automatically scale and manage workloads.

With the expansive storage capacity of a data lake and the powerful search and AI relevance capabilities of Elasticsearch, Search AI Lake delivers low-latency query performance without sacrificing scalability, relevance, or affordability.

Search AI Lake benefits include:

- Boundless scale, decoupled compute and storage: Fully decoupling storage and compute enables effortless scalability and reliability using object storage, dynamic caching supports high throughput, frequent updates, and interactive querying of large data volumes. This eliminates the need for replicating indexing operations across multiple servers, cutting indexing costs and reducing data duplication.

- Real-time, low latency: Multiple enhancements maintain excellent query performance even when the data is safely persisted on object stores. This includes the introduction of smart caching and segment-level query parallelization to reduce latency by enabling faster data retrieval and allowing more requests to be processed quickly.

- Independently scale indexing and querying: By separating indexing and search at a low level, the platform can independently and automatically scale to meet the needs of a wide range of workloads.

- GAI optimized native inference and vector search: Users can leverage a native suite of powerful AI relevance, retrieval, and reranking capabilities, including a native vector database fully integrated into Lucene, open inference APIs, semantic search, and first- and third-party transformer models, which work seamlessly with the array of search functionalities.

- Powerful query and analytics: Elasticsearch’s powerful query language, ES|QL, is built in to transform, enrich, and simplify investigations with fast concurrent processing irrespective of data source and structure. Full support for precise and efficient full-text search and time series analytics to identify patterns in geospatial analysis are also included.

- Native machine learning: Users can build, deploy, and optimize machine learning directly on all data for superior predictions. For security analysts, prebuilt threat detection rules can easily run across historical information, even years back. Similarly, unsupervised models perform near-real-time anomaly detections retrospectively on data spanning much longer time periods than other SIEM platforms.

- Truly distributed - cross-region, cloud, or hybrid: Query data in the region or data center where it was generated from one interface. Cross-cluster search (CCS) avoids the requirement to centralize or synchronize. It means within seconds of being ingested, any data format is normalized, indexed, and optimized to allow for extremely fast querying and analytics. All while reducing data transfer and storage costs.

Search AI Lake powers a new Elastic Cloud Serverless offering that harnesses the innovative architecture’s speed and scale to remove operational overhead so users can quickly and seamlessly start and scale workloads. All operations, from monitoring and backup to configuration and sizing, are managed by Elastic – users just bring their data and choose Elasticsearch, Elastic Observability, or Elastic Security on Serverless.

“To meet the requirements of more AI and real-time workloads, it’s clear a new architecture is needed that can handle compute and storage at enterprise speed and scale – not one or the other,” said Ken Exner, chief product officer at Elastic. “Search AI Lake pours cold water on traditional data lakes that have tried to fill this need but are simply incapable of handling real-time applications. This new architecture and the serverless projects it powers are precisely what’s needed for the search, observability, and security workloads of tomorrow.”

Search AI Lake and Elastic Cloud Serverless are currently available in tech preview.

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...