

Elastic, the company behind Elasticsearch and the Elastic Stack, announced Elastic APM.
This first production-ready release of Elastic APM is an extension of Elastic's product stack into application performance. It allows application developers and devops engineers to monitor and analyze the impact of individual lines of code on system and business performance. This not only speeds, but also extends the debugging process, incorporating code performance into a holistic view of operational efficiency.
Elastic APM stores data into an Elasticsearch index, allows for APM data to be correlated with logs and metrics collected via Logstash and Beats, includes a server-side component and agents for Node.js, Python, Ruby and JavaScript; and an APM app tailored for a typical APM workflow.
Elastic APM is now available as part of the Elastic 6.2 release.
In addition, Elastic announced the following new and upcoming features:
- Swiftype App Search: Built for developers to add more powerful search functionality to their applications, Swiftype App Search delivers a robust set of APIs and additional search-specific features such as result positioning, synonyms, and typo-tolerance. Swiftype App Search is a turnkey SaaS solution requiring no infrastructure, management and maintenance, and offers an easy getting-started experience. Swiftype App Search is now available as a public beta.
- Machine Learning Forecasting: The first major extension of Elastic's machine learning capabilities extends functionality into the realm of predictive analytics. Users can model time series data and use sophisticated, ready-made, machine learning algorithms to forecast outcomes several time intervals into the future. With on-demand forecasting, users can take an existing machine learning job and, using the predictive model built into machine learning, gain accurate predictions on where that model is expected to grow over the forecast period. The forecast results are written to an Elasticsearch index allowing users to compare actual results to forecast models. Elastic's machine learning forecasting capabilities are now available as part of the 6.2 release.
- SQL for Elasticsearch: This new feature opens up the power of the Elastic Stack to the world's most established database community of SQL developers, allowing users to query Elasticsearch data in familiar SQL Syntax. It also dramatically simplifies the (re)export of data from Elasticsearch back into external SQL environments with out-of-the-box JDBC support. By allowing Elasticsearch to understand SQL through a RESTful interface, SQL for Elasticsearch lets you query your Elasticsearch data using SQL syntax, returns results to those queries in a tabular form consistent with traditional SQL engines and provides a user interface to explore the data. SQL for Elasticsearch was introduced last year as a concept and will soon be available in an alpha and beta release.
- Rollups: Commonly associated with metrics and logging use cases when storing data for long periods of time is required, rollups enable users to store a limited set of data, reducing the disk usage of historical data. An Elasticsearch rollup job allows users to configure periodic jobs that "rollup" or pre-aggregate data, and store the rollup in an index. One example is a metric like "average load time returned by the web server per hour," of which, the average data is rolled up and stored, but other raw data attributes like the specific user, page, and IP information are not. This will be available soon in a beta for Elasticsearch and later with Kibana support.
- Flexible Deployment Configurations: As customers put more and more data into Elasticsearch and expand their use cases, Elastic introduces the concept of "sliders" to give users the ability to customize their cluster configurations. Available for Elastic Cloud and Elastic Cloud Enterprise (ECE) customers, some of the new capabilities include: support for multiple classes of hardware; support for cluster templates and hot/warm clusters; and the ability to add machine learning, dedicated master nodes, and APM nodes to existing cluster configurations. These new features will be available soon in both Elastic Cloud and Elastic Cloud Enterprise.
- Logstash Azure Monitoring Module: Built in collaboration with Microsoft, the Logstash Azure Monitoring module is the easiest way to monitor your Azure infrastructure and services with the Elastic Stack. This new module integrates with Azure's centralized logging service to normalize Azure logs and metrics into JSON; uses Logstash to consume the data into Elasticsearch; and with Kibana, users can analyze infrastructure changes and authorization failures; identify suspicious activity and potential malicious actors; perform root-cause analysis by investigating user activity; and monitor and optimize SQL DB deployments. This will be available soon as a beta release.
- Elastic certification program. Fueled by user demand to have professional accreditation, Elastic will be offering new training curriculum designed for users to become experts and be certified by Elastic. New courses, Elasticsearch Engineer I and Elasticsearch Engineer II, will give users first-hand knowledge of installing, managing and optimizing Elasticsearch clusters, as well as, developing new solutions for analyzing their data. These courses are the foundation to becoming an Elastic Certified Engineer, which includes a hands-ons, technical and performance-based certification exam and an official digital Elastic certification badge for users who pass the exam.
The Latest
Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...
IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...
Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ...
In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...
In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...
In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...
In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...
Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...