Elastic Stack 7.0 Released
April 11, 2019
Share this

Elastic, the company behind Elasticsearch and the Elastic Stack, announced the general availability of version 7.0 of the Elastic Stack.

This release delivers several foundational changes including big improvements to query speed and relevance with the introduction of new query types in Elasticsearch, a fully revamped cluster coordination framework that hardens resiliency, and a completely redesigned Kibana interface that simplifies the user experience and navigation. Elastic Stack 7.0 is immediately available for download, or users can spin up fully managed deployments on the Elasticsearch Service on Elastic Cloud.

Kibana 7.0 delivers on a fresh user interface that embraces a lighter, cleaner, and more minimalist design aesthetic. The goal of the redesign is to put the content and data at the center of the user experience. The new design builds on months of engineering and design effort on the new Elastic UI framework, a set of consistent and reusable UI components that were first introduced in version 6.2. The result is a more uniform and consistent user experience across all touch points in Kibana. As another benefit of these changes, Kibana dashboards now have a responsive design, which is the first step in dramatically improving usability on mobile devices.

Kibana 7.0 also delivers on a much-requested feature: dark mode for all of Kibana. Previously, dark mode was limited to Kibana dashboards. By extending dark mode to all of Kibana, Elastic users that deploy Kibana in low-light environments, such as NOCs and SOCs, can enjoy an enhanced visual experience, with better contrast and improved readability of text.

Relevance and speed are the cornerstones of most search experiences. And Elasticsearch 7.0 introduces several foundational features that improve both.

- Faster top k queries: In many search use cases, quickly seeing the top k (say 20) results on a query matters much more to the user than the exact hit count (i.e., total number of results matching the query). For example, if someone is searching for a product on an e-commerce website, they are much more interested in the 10 most relevant results than the other 120,897 results that matched their search query. Elasticsearch 7.0 (and Lucene 8.0) implements a new algorithm (Block-Max WAND) that provides a huge speed boost when retrieving top hits.

- Intervals queries: Some search use cases, such as legal and patent search, introduce the need to find records in which words or phrases are within a certain distance from each other. Intervals queries in Elasticsearch 7.0 introduce a brand new way of structuring such queries and are significantly simpler to use and define compared to the previous methods (span queries). Intervals queries are also much more resilient to edge cases compared to span queries.

- Function score 2.0: Custom scoring is the bread and butter of advanced search use cases, where one wants finer control over relevancy and results ranking. Elasticsearch has provided the ability to do this since its early days. 7.0 introduces the next generation of function score capability, providing a simpler, modular, and more flexible way to generate a ranking score per record. The new modular structure allows users to mix and match a set of arithmetic and distance functions to construct arbitrary function score calculations, giving them more control over how results are scored and ranked.

Scale and resiliency have been central themes in Elasticsearch since the very beginning. The cluster coordination layer, called Zen Discovery, has been a key component of that resilient design. With Elasticsearch 7.0, Elastic has completely rebuilt this cluster coordination layer to be faster, safer, and easier to use. 7.0 also includes a number of changes that reduce the likelihood of human error and provide clearer choices when recovering from catastrophic failures. The ground-up rebuild of the cluster coordination layer was a huge accomplishment — it’s not easy to improve reliability, performance, and user experience all at once, especially in such a central component. Most importantly, the new cluster coordination layer provides strong building blocks for the future of Elasticsearch, ensuring that Elastic can build functionality for even more advanced use cases to come.

Another improvement to resiliency in 7.0 is the introduction of the real memory circuit breaker, which much more accurately detects unserviceable requests made to a node and prevents them from making an individual node unstable. This change significantly improves the overall node and cluster reliability.
Smoother Zoom in Elastic Maps with Geotile Grid

Geo is an integral part of most search experiences, and it has been an area of constant engineering investment for Elastic. Elastic added support for ingesting and querying geo data in very early versions of Elasticsearch, and then recently moved geo_point and geo_shapes to Bkd-backed storage structures, with significant storage and query performance improvements (in some cases by 25x). On the visual exploration end, the introduction of Elastic Maps in version 6.7 provided a dramatically improved way to visually map, explore, and query location data.

With 7.0, the evolution of the geo story in the Elastic Stack continues with the addition of a new geotile_grid aggregation in Elasticsearch to handle (geo) map tiles in a way that allows a user to zoom in and out on the map without altering the shape of the result data. Elastic Maps in 7.0 is already using this new aggregation. Prior to this change, the fringes of the shape could slightly change with the change in the zoom level because the rectangular tiles would change orientation at different zoom levels. This level of accuracy is important, whether the user is protecting a network from attackers, investigating slow application response times in specific locations, or tracking a relative hiking the Pacific Crest Trail.

Whether it’s infrastructure metrics, system audit logs, network traffic, or a rover on Mars, time series data is central to how many people use the Elastic Stack. The ability to precisely order and correlate events across multiple systems and services is key. Until now, Elasticsearch only stored timestamps with millisecond precision. 7.0 adds a few zeroes, bringing this to nanosecond precision, which gives users with high-frequency data collection needs the precision required to accurately store and sequence this data. The change was made possible by migrating from the historical JODA library to the official Java time API in JDK 8.

Share this

The Latest

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...

September 30, 2019

Digital transformation, migration to the enterprise cloud and increasing customer demands are creating a surge in IT complexity and the associated costs of managing it. Technical leaders around the world are concerned about the effect this has on IT performance and ultimately, their business according to a new report from Dynatrace, based on an independent global survey of 800 CIOs, Top Challenges for CIOs in a Software-Driven, Hybrid, Multi-Cloud World ...