Enhancing Developer Self-Reliance to Increase Job Satisfaction
November 30, 2022

Ozan Unlu
Edge Delta

Share this

According to industry data, more than half of all developers would be open to new opportunities if the right one came their way. This makes developer recruiting teams think: what do developers care about when they evaluate new opportunities? And how do you attract and keep top developer talent?

There are many issues that can contribute to developer dissatisfaction on the job — inadequate pay and work-life imbalance, for example. But increasingly there's also a troubling and growing sense of lacking ownership and feeling out of control. As a developer, even if you produce the best code in the world, there's always a dependency on other things you didn't build that will ultimately impact how your code performs in the real world.

One key way to increase job satisfaction is to ameliorate this sense of ownership and control whenever possible, and approaches to observability offer several ways to do this. For instance:

All Data Matters

Observability is the task of collecting raw telemetry data — logs, metrics and traces — to achieve deep visibility into distributed applications and systems. With observability, organizations can proactively monitor application and system health and troubleshoot when necessary to get to the root cause of issues, ultimately improving performance.

Traditional observability follows a "centralized" or "store and explore" model — data is collected and filtered into one main central repository for analysis. The challenge with this approach is that in order to keep costs in line, many organizations put a cap on how much data can be kept, forcing developers to neglect certain datasets which can leave them with significant blind spots. If a problem occurs, developers may not have access to the raw data showing the full context of the issue.

Decentralized observability — applying distributed stream processing and machine learning at the source so all data sets can be viewed and analyzed as they're being created — changes this paradigm. When observability is decentralized, developers are empowered in several ways.

First, they always have full access to all the data they need to verify performance and health as well as make necessary fixes whenever a problem is detected.

Second, the concept of data limits becomes null, enabling all data to be collected and analyzed — including pre-production data, which offers a wealth of actionable insights to help developers avoid production problems in the first place.

Don't Make Them Have to Ask

As noted above, developers often lack access to their own observability data. Further inhibiting the developer experience is the notion that many observability platforms are complex and hard to master. We find that frequently, this expertise lives in the operations side of the house, making developers dependent on DevOps and SRE team members to verify the health and performance of production applications. When observability is highly automated, developers don't have to make the ask and can fix their own problems — which can save time and boost morale. With an industry standard 1:10 SRE-to-developer ratio, forcing developers to over-rely on already stretched thin SREs can certainly create bottlenecks and job frustration.

In this way decentralized observability brings down barriers, reduces friction and infuses the entire end-to-end software lifecycle with greater agility, harmony and collaboration. For example, developers can move quickly without fear of making simple, common errors like leaving debug on, which can lead to storage costs overflowing and getting into trouble. DevOps and SRE professionals also benefit by only having to be brought in to handle the most pressing and complex challenges.

Staying One Step Ahead

Many observability tools are overly manual when it comes to configurations and onboarding new services. Specifically, every time a feature is deployed or updated, developers must build or update alerts and dashboards to ensure the service is working in production. Such an approach becomes problematic as organizations adopt microservices and shift to a continuous delivery model. With systems being spun up so quickly, any lag time in achieving real-time visibility into mission-critical production systems can be a real competitive disadvantage.

In addition, without this up-front work, unknown problems or issues an organization hasn't yet built rules to catch — known as "unknown unknowns" — can go undetected. Production environments are the wild wild west where anything can happen – unpredictable errors, bugs, slowdowns, scale and performance issues, to name a few. This inability to track "unknown unknowns" out of the gate is a type of people and process problem accounting for up to 80 percent of end-to-end site availability glitches.

In a continuous delivery environment, observability tools must feature autodiscover capabilities so newly deployed applications and systems can be included and real-time visibility obtained instantaneously. This means automated onboarding and setting up of queries, alerts and dashboards, as well as applying machine learning to automatically detect anomalies for which rules haven't yet been built — and may catch an organization off guard. In addition, log data is incredibly noisy and unstructured, making it unrealistic to expect developers to sift through humongous data volumes to find what they need to proactively understand service behavior and troubleshoot issues. Automatic surfacing of contextual raw data and insights can be the key to developers spending less time monitoring and troubleshooting, and more time on their core function of innovating.

Conclusion

For many organizations today, software development is a mission-critical process in and of itself, which makes attracting and retaining top developer talent an utmost priority. There are many ways to increase developer job satisfaction, but one key method is to increase developers' sense of command by fostering self-reliance. Observability techniques and tooling offer ample opportunities for this, by enabling a constant eye on all data, increased independence on the job and reduction of mundane, time-consuming processes that leave developers in a reactive position. Traditionally, observability tools haven't been built to prioritize the developer experience, but fortunately this is changing and making developers' lives better.

Ozan Unlu is CEO of Edge Delta
Share this

The Latest

January 26, 2023

As enterprises work to implement or improve their observability practices, tool sprawl is a very real phenomenon ... Tool sprawl can and does happen all across the organization. In this post, though, we'll focus specifically on how and why observability efforts often result in tool sprawl, some of the possible negative consequences of that sprawl, and we'll offer some advice on how to reduce or even avoid sprawl ...

January 25, 2023

As companies generate more data across their network footprints, they need network observability tools to help find meaning in that data for better decision-making and problem solving. It seems many companies believe that adding more tools leads to better and faster insights ... And yet, observability tools aren't meeting many companies' needs. In fact, adding more tools introduces new challenges ...

January 24, 2023

Driven by the need to create scalable, faster, and more agile systems, businesses are adopting cloud native approaches. But cloud native environments also come with an explosion of data and complexity that makes it harder for businesses to detect and remediate issues before everything comes to a screeching halt. Observability, if done right, can make it easier to mitigate these challenges and remediate incidents before they become major customer-impacting problems ...

January 23, 2023

The spiraling cost of energy is forcing public cloud providers to raise their prices significantly. A recent report by Canalys predicted that public cloud prices will jump by around 20% in the US and more than 30% in Europe in 2023. These steep price increases will test the conventional wisdom that moving to the cloud is a cheap computing alternative ...

January 19, 2023

Despite strong interest over the past decade, the actual investment in DX has been recent. While 100% of enterprises are now engaged with DX in some way, most (77%) have begun their DX journey within the past two years. And most are early stage, with a fourth (24%) at the discussion stage and half (49%) currently transforming. Only 27% say they have finished their DX efforts ...

January 18, 2023

While most thought that distraction and motivation would be the main contributors to low productivity in a work-from-home environment, many organizations discovered that it was gaps in their IT systems that created some of the most significant challenges ...

January 17, 2023
The US aviation sector was struggling to return to normal following a nationwide ground stop imposed by Federal Aviation Administration (FAA) early Wednesday over a computer issue ...
January 13, 2023

APMdigest and leading IT research firm Enterprise Management Associates (EMA) are teaming up on the EMA-APMdigest Podcast, a new podcast focused on the latest technologies impacting IT Operations. In Episode 1, Dan Twing, President and COO of EMA, discusses Observability and Automation with Will Schoeppner, Research Director covering Application Performance Management and Business Intelligence at EMA ...

January 12, 2023

APMdigest is following up our list of 2023 Application Performance Management Predictions with predictions from industry experts about how the cloud will evolve in 2023 ...

January 11, 2023

As demand for digital services increases and distributed systems become more complex, organizations must collect and process a growing amount of observability data (logs, metrics, and traces). Site reliability engineers (SREs), developers, and security engineers use observability data to learn how their applications and environments are performing so they can successfully respond to issues and mitigate risk ...