Even Artificial Intelligence Is Only as Good as Its Users
November 09, 2023

Khadim Batti
Whatfix

Share this

Artificial intelligence (AI) has saturated the conversation around technology as compelling new tools like ChatGPT produce headlines every day. Enterprise leaders have correctly identified the potential of AI — and its many tributary technologies — to generate new efficiencies at scale, particularly in the cloud era. But as we now know, these technologies are rarely plug-and-play, for reasons both technical and human. As they introduce AI into the workplace, IT leaders, CIOs and other executives will need to address both of these dynamics to derive the full value from their technology investments across all different departments from sales and marketing to R&D.

Focus on User Digital Experience

The value of modern technology is realized at scale. As new advanced technologies move more into everyday operations, an emerging barrier (and consequently, also a differentiator) is how easily and efficiently users are able to interact with the tools they're given. A powerful tool which lags in adoption among half the workforce cannot achieve its full potential value. Of course, this means training is essential. But the modern technology environment moves quickly, outpacing traditional training methods. Therefore, methods of training need to evolve as well, leveraging the technologies to which they correspond.

Organizations that are able to achieve high rates of technology adoption, usage, and efficiency among their workforce at scale will be in a far better position to generate the full returns on their technology investments. This means focusing on users just as much as the technology itself.

Organizations must take advantage of all the training resources at their disposal — including product demos, walkthroughs, and other materials — to adapt to new technology. However, the core issue is the rapid rate of technology change. The pace of change makes it challenging for users to adjust to the cadence of updates and new tools. This holds companies back from realizing the full value of their technology investments through lack of user adoption.

Crucially, traditional training methods are inadequate in the face of today's fast-moving technology landscape. This is where AI can enable the introduction of further tools: by automating user guidance through a software layer that can act across business apps, for example, an organization can reduce the friction associated with learning a new tool and therefore increase adoption. AI on the back end can automate tasks or introduce real-time guidance to produce a smoother, more efficient user experience.

By making business apps easier to use and adopt, organizations can derive greater value from their existing technology suite as well as reduce the friction associated with introducing a new tool. Used in this way, and combined with more traditional elements, like workshops and on-demand informational content and mechanisms to deliver feedback, AI creates a virtuous cycle.

The other side of this is monitoring software efficiency. In modern organizations, data fuels decision making — this should be no different when it comes to AI. Leaders can't expect to introduce solutions — even automated solutions — and automatically receive maximum return on their investment. Especially at scale, digital tools are still only as good as how well they're being used. Leaders must be able to identify bottlenecks and quickly adapt to increase efficiency over time. This means developing KPIs that correspond to business goals and tracking with the purpose of making informed adjustments to strategy both on the business side and the internal technology side.

Build the Infrastructure to Support AI

Digital transformation in general, and especially where AI is concerned, is at its core a technical and organizational infrastructure to support continuous change over time. In the cloud era, change management strategies must be a permanent feature of the company's strategic outlook rather than a transition plan with an end-date. Technology, as the primary differentiator in all industries, must be a central part of any change management strategy. For AI, this means building teams that have the skills and expertise to manage its deployment across business units.

Software engineers are an essential part of any AI team — they have the technical capabilities to enable deployments and to integrate them into operations. They should also contribute to making the operations of any particular AI program visible and intelligible to all relevant stakeholders, and especially the C-suite.

It's important to note that AI is not best used as a catch-all solution to apply broadly and blindly everywhere it might fit. In the avalanche of AI headlines concerning every industry under the sun, it can be easy to forget this. AI is best used to achieve specific tasks. Organizations must clearly identify the purpose of each AI deployment and have a reliable means to track its progress in relation to those goals.

The team should include representatives from product management and design to ensure that any AI project aligns with overall business objectives. Additionally, organizations must ensure that stakeholders clearly understand the inputs and outputs of any program, as well as how they relate to one another so that teams can make informed decisions about strategic adjustments. AI outputs depend on the specificity of their inputs, so teams must be trained on how to formulate these inputs in an efficient way, a process called "prompt engineering." Some AI solutions can also learn these inputs as employees deploy them and autofill them in context moving forward, creating a positive feedback loop to remove friction from the process over time.

Artificial intelligence represents a structural shift in how we use technology — organizations must reflect that by establishing dedicated systems and structures to integrate the technology and manage its evolution over time. At the same time, the organizations that are able to achieve the best return on AI investments will clearly understand its capabilities and limitations and establish mechanisms to ensure AI projects are contributing positively to overall business goals.

Unlocking the Potential of Your Existing Workforce

AI is here to stay, and it represents a massive change in terms of how people and businesses relate to technology. As tools like generative AI grow more sophisticated, they will emerge in additional areas of our everyday lives — chatbots, customer service, IT service management, and more, for example. In sales, for example, AI helps employees conduct prospect research and develop personalized email scripts on the front end, while economizing the CRM user experience on the back end. In R&D it helps researchers filter monumental datalakes of information to produce actionable knowledge.

The true benefits of AI tools are in the efficiencies they can unlock among the existing workforce. Employees within a structure that focuses on continuous transformation will develop competencies and skills through their natural workflows that will enable them to supervise AI as an everyday function. By focusing on user digital experience as much as the technologies themselves, organizations will be able to generate the maximum return on their investments while simultaneously developing the capacity to evolve in tandem with innovations they used to chase.

Khadim Batti is Co-founder and CEO of Whatfix
Share this

The Latest

December 05, 2023

Industry experts offer thoughtful, insightful, and often controversial predictions on how APM, AIOps, Observability, OpenTelemetry and related technologies will evolve and impact business in 2024. Part 2 covers more on Observability ...

December 04, 2023

The Holiday Season means it is time for APMdigest's annual list of Application Performance Management (APM) predictions, covering IT performance topics. Industry experts — from analysts and consultants to the top vendors — offer thoughtful, insightful, and often controversial predictions on how APM, observability, AIOps and related technologies will evolve and impact business in 2024. Part 1 covers APM and Observability ...

November 30, 2023

To help you stay on top of the ever-evolving tech scene, Automox IT experts shake the proverbial magic eight ball and share their predictions about tech trends in the coming year. From M&A frenzies to sustainable tech and automation, these forecasts paint an exciting picture of the future ...

November 29, 2023
The past few years have presented numerous challenges for businesses: a pandemic, rising interest rates, supply chain disruptions, and geopolitical conflict that sent shockwaves across the global economy. But change may finally be on the horizon. According to a recent report by Endava ... a majority of executives confirmed they are feeling optimistic about the current business climate, and as a result, are forecasting larger IT budgets, increased technology funding and rollout, and prioritized innovation in the coming year ...
November 28, 2023

Incident management processes are not keeping pace with the demands of modern operations teams, failing to meet the needs of SREs as well as platform and ops teams. Results from the State of DevOps Automation and AI Survey, commissioned by Transposit, point to an incident management paradox. Despite nearly 60% of ITOps and DevOps professionals reporting they have a defined incident management process that's fully documented in one place and over 70% saying they have a level of automation that meets their needs, teams are unable to quickly resolve incidents ...

November 27, 2023

Today, in the world of enterprise technology, the challenges posed by legacy Virtual Desktop Infrastructure (VDI) systems have long been a source of concern for IT departments. In many instances, this promising solution has become an organizational burden, hindering progress, depleting resources, and taking a psychological and operational toll on employees ...

November 22, 2023

Within retail organizations across the world, IT teams will be bracing themselves for a hectic holiday season ... While this is an exciting opportunity for retailers to boost sales, it also intensifies severe risk. Any application performance slipup will cause consumers to turn their back on brands, possibly forever. Online shoppers will be completely unforgiving to any retailer who doesn't deliver a seamless digital experience ...

November 21, 2023

Black Friday is a time when consumers can cash in on some of the biggest deals retailers offer all year long ... Nearly two-thirds of consumers utilize a retailer's web and mobile app for holiday shopping, raising the stakes for competitors to provide the best online experience to retain customer loyalty. Perforce's 2023 Black Friday survey sheds light on consumers' expectations this time of year and how developers can properly prepare their applications for increased online traffic ...

November 20, 2023

This holiday shopping season, the stakes for online retailers couldn't be higher ... Even an hour or two of downtime for a digital storefront during this critical period can cost millions in lost revenue and has the potential to damage brand credibility. Savvy retailers are increasingly investing in observability to help ensure a seamless, omnichannel customer experience. Just ahead of the holiday season, New Relic released its State of Observability for Retail report, which offers insight and analysis on the adoption and business value of observability for the global retail/consumer industry ...

November 16, 2023

As organizations struggle to find and retain the talent they need to manage complex cloud implementations, many are leaning toward hybrid cloud as a solution ... While it's true that using the cloud is not a "one size fits all" proposition, it is clear that both large and small companies prefer a hybrid cloud model ...