Skip to main content

Evolving Technology and Corporate Culture Toward Autonomous IT and Agentic AI

Michael Nappi
ScienceLogic

Today's enterprises exist in rapidly growing, complex IT landscapes that can inadvertently create silos and lead to the accumulation of disparate tools. To successfully manage such growth, these organizations must realize the requisite shift in corporate culture and workflow management needed to build trust in new technologies. This is particularly true in cases where enterprises are turning to automation and autonomic IT to offload the burden from IT professionals. This interplay between technology and culture is crucial in guiding teams using AIOps and observability solutions to proactively manage operations and transition toward a machine-driven IT ecosystem.

Digital Transformation Also Requires Cultural Transformation

Modern companies grapple with increasingly complex IT landscapes that can easily outpace the process adjustments and workforce changes needed to integrate them effectively. Operation managers in particular are finding they must adapt to new protocols and new levels of efficiency as machines become more autonomous and capable of taking over previously human-centered tasks.

The job becomes more difficult the bigger an organization gets. A larger IT estate means more tools and capabilities that must be managed, and more parts of the organization that need to be connected so that agile data standards and practices can be shared. Even pilot projects that manage to successfully integrate technology and workforce training in one part of the organization may be difficult to expand to other parts of the company thanks to divisional silos.

Furthermore, in cases where enterprise growth involves a new merger or acquisition, digital transformation may need to happen amid multiple and potentially conflicting legacy cultures. Particularly challenging are scenarios where a merger involves rapid technology implementation and rigid meta-architectures vs. more ongoing integrations that allow IT systems and intellectual property to stand independently for a time before rebranding and gradually transitioning the culture.

Transforming Technology and Culture Together

The above are just a few of the scenarios that illustrate how, for every transformation in technology, an organization must foster a cultural shift that prioritizes education and trust in its adoption. Successful transformation leaders are learning they must infuse their workforce-oriented training, development, and other resources with a clear vision for the organization; and the stakes become higher where AI is concerned.

AI plays a crucial role in enhancing IT efficiency and increasing overall business agility by automating traditionally human-driven tasks, making them more repeatable, scalable, and less error-prone. Resistance to such change is natural, and IT leaders must proactively educate their workforce on why these technologies are being adopted, demystifying their role and clearly articulating the benefits they bring. To ease this transition, a structured upskilling and training program is critical for ensuring employees see both the personal and organizational benefits from AI adoption.

Additionally, transparency is essential throughout this process. Establishing clear, consistent definitions and workflows within AI-driven systems can help bring clarity to the human role in supporting these technologies and ensuring that AI enhances, rather than disrupts, corporate processes. Throughout, AI systems should not operate as black boxes; instead, they must "show their work" by making their decision-making processes explainable and accountable.

Autonomic IT and Agentic AI

Corporate culture will shape how seamlessly and effectively the modernization effort toward a more autonomous and intelligent enterprise operation will unfold. The best approaches align technology and culture along a structured journey model — assessing both the IT and workforce needs around data maturity, process automation, AI readiness, and success metrics. Such efforts can quickly propel organizations toward the largely self-sustaining capabilities and ecosystem of Agentic AI and autonomic IT.

As IT teams become more comfortable relying on AI, machine learning, predictive analytics, and automation, they can begin to turn their attention to unlocking the power of Agentic AI. The term refers to advanced scenarios where machine and human resources blend to create an AI assistant capable of delivering accurate predictions, tailored recommendations, and intelligent automations that drive business efficiency and innovation. Such systems leverage generative AI and unsupervised ML combined with human-in-the-loop automation training models to revolutionize IT operations.

Relinquishing the responsibility of mundane, repetitive tasks, IT teams can begin to reap the benefits of autonomic IT — a seamlessly integrated ecosystem of advanced technologies designed to enhance IT operations. Functioning like the human autonomic nervous system that automatically regulates functions like heart rate, breathing, and body temperature, it continuously monitors the IT environment, identifying anomalies, analyzing patterns, and predicting potential issues before they arise. By leveraging the combination of AI, data, and automation to autonomously diagnose and resolve problems, autonomic IT environments can take corrective action in real-time — even to the extent of switching systems or initiating automated backups to ensure resilience, efficiency, and minimal disruption.

Conclusion

To successfully navigate the complexities of modern IT landscapes, enterprises must bridge the gap between rapid technological advancements and the corporate culture needed to support them. Embracing automation demands a cultural shift that fosters education, trust, and strategic alignment of machine and human resources. In doing so, IT leaders can empower their teams to proactively manage operations and drive efficiency in a more agile, machine-driven IT ecosystem.

Michael Nappi is Chief Product Officer at ScienceLogic

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

Evolving Technology and Corporate Culture Toward Autonomous IT and Agentic AI

Michael Nappi
ScienceLogic

Today's enterprises exist in rapidly growing, complex IT landscapes that can inadvertently create silos and lead to the accumulation of disparate tools. To successfully manage such growth, these organizations must realize the requisite shift in corporate culture and workflow management needed to build trust in new technologies. This is particularly true in cases where enterprises are turning to automation and autonomic IT to offload the burden from IT professionals. This interplay between technology and culture is crucial in guiding teams using AIOps and observability solutions to proactively manage operations and transition toward a machine-driven IT ecosystem.

Digital Transformation Also Requires Cultural Transformation

Modern companies grapple with increasingly complex IT landscapes that can easily outpace the process adjustments and workforce changes needed to integrate them effectively. Operation managers in particular are finding they must adapt to new protocols and new levels of efficiency as machines become more autonomous and capable of taking over previously human-centered tasks.

The job becomes more difficult the bigger an organization gets. A larger IT estate means more tools and capabilities that must be managed, and more parts of the organization that need to be connected so that agile data standards and practices can be shared. Even pilot projects that manage to successfully integrate technology and workforce training in one part of the organization may be difficult to expand to other parts of the company thanks to divisional silos.

Furthermore, in cases where enterprise growth involves a new merger or acquisition, digital transformation may need to happen amid multiple and potentially conflicting legacy cultures. Particularly challenging are scenarios where a merger involves rapid technology implementation and rigid meta-architectures vs. more ongoing integrations that allow IT systems and intellectual property to stand independently for a time before rebranding and gradually transitioning the culture.

Transforming Technology and Culture Together

The above are just a few of the scenarios that illustrate how, for every transformation in technology, an organization must foster a cultural shift that prioritizes education and trust in its adoption. Successful transformation leaders are learning they must infuse their workforce-oriented training, development, and other resources with a clear vision for the organization; and the stakes become higher where AI is concerned.

AI plays a crucial role in enhancing IT efficiency and increasing overall business agility by automating traditionally human-driven tasks, making them more repeatable, scalable, and less error-prone. Resistance to such change is natural, and IT leaders must proactively educate their workforce on why these technologies are being adopted, demystifying their role and clearly articulating the benefits they bring. To ease this transition, a structured upskilling and training program is critical for ensuring employees see both the personal and organizational benefits from AI adoption.

Additionally, transparency is essential throughout this process. Establishing clear, consistent definitions and workflows within AI-driven systems can help bring clarity to the human role in supporting these technologies and ensuring that AI enhances, rather than disrupts, corporate processes. Throughout, AI systems should not operate as black boxes; instead, they must "show their work" by making their decision-making processes explainable and accountable.

Autonomic IT and Agentic AI

Corporate culture will shape how seamlessly and effectively the modernization effort toward a more autonomous and intelligent enterprise operation will unfold. The best approaches align technology and culture along a structured journey model — assessing both the IT and workforce needs around data maturity, process automation, AI readiness, and success metrics. Such efforts can quickly propel organizations toward the largely self-sustaining capabilities and ecosystem of Agentic AI and autonomic IT.

As IT teams become more comfortable relying on AI, machine learning, predictive analytics, and automation, they can begin to turn their attention to unlocking the power of Agentic AI. The term refers to advanced scenarios where machine and human resources blend to create an AI assistant capable of delivering accurate predictions, tailored recommendations, and intelligent automations that drive business efficiency and innovation. Such systems leverage generative AI and unsupervised ML combined with human-in-the-loop automation training models to revolutionize IT operations.

Relinquishing the responsibility of mundane, repetitive tasks, IT teams can begin to reap the benefits of autonomic IT — a seamlessly integrated ecosystem of advanced technologies designed to enhance IT operations. Functioning like the human autonomic nervous system that automatically regulates functions like heart rate, breathing, and body temperature, it continuously monitors the IT environment, identifying anomalies, analyzing patterns, and predicting potential issues before they arise. By leveraging the combination of AI, data, and automation to autonomously diagnose and resolve problems, autonomic IT environments can take corrective action in real-time — even to the extent of switching systems or initiating automated backups to ensure resilience, efficiency, and minimal disruption.

Conclusion

To successfully navigate the complexities of modern IT landscapes, enterprises must bridge the gap between rapid technological advancements and the corporate culture needed to support them. Embracing automation demands a cultural shift that fosters education, trust, and strategic alignment of machine and human resources. In doing so, IT leaders can empower their teams to proactively manage operations and drive efficiency in a more agile, machine-driven IT ecosystem.

Michael Nappi is Chief Product Officer at ScienceLogic

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...