Why do outages of mission-critical applications still happen? Aren't there multiple solutions that can alert IT teams to problems? Yes – and that can be part of the problem. One alarm goes off, and then another and another until the team is quickly overwhelmed. By the time an incident like this is brought under control, the company may have lost on average as much as $750,000 for a 90-minute outage, according to the Ponemon report, Cost of Data Center Outages, in addition to loss of face and damage to brand value.
What typically happens next is that forensic experts go through multiple product consoles and logs to identify the cause of an incident, and the blame gets passed around as time ticks away. But deep machine learning-based, root-cause analytics and predictive analytics technologies are helping organizations dramatically prevent such incidents and reduce mean time to repair.
In a digital-first world, teams must manage unparalleled amounts of data while predicting and preventing outages, in real time, while maintaining and delivering agile, reliable applications. The problem is that most organizations must tap several different siloed vendor tools to assist in the monitoring, identifying, mitigation and remediation of incidents and hope that they speak to each other, which traditionally hasn't happened.
IT infrastructure keeps changing from physical to hybrid and multi-cloud environments, and new architectures keep arising. Consequently, it is becoming impossible for IT administrators to keep up with the multitude of objects, with thousands of metrics generating data in near-real time.
Applications in today's environments need to be reliable and secure within these high performance environments, so new approaches must be employed to provide intelligence. Automated, self-learning solutions that analyze and provide insight into applications and infrastructure topologies are essential in this transformation.
The New Language of Monitoring Tools
Vendors are throwing around phrases like "big data" and "machine learning" because organizations understand that these features can help them tackle the complex needs of application performance. But what do they really mean?
Machine Learning: Machine learning is self-learning, supervised or unsupervised algorithms that can be based on neural networks, statistics or Digital Signal Processing et al.
Big Data Architecture: A framework for managing masses of structured and unstructured data in an automated, highly scalable way using open source technologies.
Domain Knowledge: Questions about what happened, what caused it, how to remediate it and prevent it from happening again – the domain knowledge in TechOps and DevOps helps answer them.
5 Questions About Your Monitoring Solution
Ask these 5 questions before moving forward with a monitoring solution that can address application outages:
1. Immediate Intelligence: Does the solution identify in real time, those alarms that need immediate attention?
2. Scalability: Does the solution scale and is it able to handle millions of objects?
3. Automation: Does it quickly pinpoint the root cause of the problem and identify how to fix it, rather than relying on expensive domain experts?
4. Communal Wisdom: Do you have access to tribal knowledge such as vendor knowledge bases, discussion forums and the latest state-of-the-art technologies in order to help teams remediate incidents quickly and efficiently?
5. Prevention: Historically, monitoring tools send alerts only after a problem has already occurred or when the rules and set thresholds are violated, but the key to preventing outages is to predict issues in advance. Does the solution provide alerts to anomalous trends or potentially dangerous issues before they impact your application?
Yesterday's siloed IT management tools tend not to communicate with each other, causing confusion and over-alerting. This makes it difficult, if not impossible, for IT teams to determine what's worth investigating and what's not – paving the way for service disruptions and breaches. Fortunately, today's solutions offer real-time insight and recommendations for remediation, as well as analytics that can predict trouble so you can stop problems before they start.
The Latest
In MEAN TIME TO INSIGHT Episode 11, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Secure Access Service Edge (SASE) ...
On average, only 48% of digital initiatives enterprise-wide meet or exceed their business outcome targets according to Gartner's annual global survey of CIOs and technology executives ...
Artificial intelligence (AI) is rapidly reshaping industries around the world. From optimizing business processes to unlocking new levels of innovation, AI is a critical driver of success for modern enterprises. As a result, business leaders — from DevOps engineers to CTOs — are under pressure to incorporate AI into their workflows to stay competitive. But the question isn't whether AI should be adopted — it's how ...
The mobile app industry continues to grow in size, complexity, and competition. Also not slowing down? Consumer expectations are rising exponentially along with the use of mobile apps. To meet these expectations, mobile teams need to take a comprehensive, holistic approach to their app experience ...
Users have become digital hoarders, saving everything they handle, including outdated reports, duplicate files and irrelevant documents that make it difficult to find critical information, slowing down systems and productivity. In digital terms, they have simply shoved the mess off their desks and into the virtual storage bins ...
Today we could be witnessing the dawn of a new age in software development, transformed by Artificial Intelligence (AI). But is AI a gateway or a precipice? Is AI in software development transformative, just the latest helpful tool, or a bunch of hype? To help with this assessment, DEVOPSdigest invited experts across the industry to comment on how AI can support the SDLC. In this epic multi-part series to be posted over the next several weeks, DEVOPSdigest will explore the advantages and disadvantages; the current state of maturity and adoption; and how AI will impact the processes, the developers, and the future of software development ...
Half of all employees are using Shadow AI (i.e. non-company issued AI tools), according to a new report by Software AG ...
On their digital transformation journey, companies are migrating more workloads to the cloud, which can incur higher costs during the process due to the higher volume of cloud resources needed ... Here are four critical components of a cloud governance framework that can help keep cloud costs under control ...
Operational resilience is an organization's ability to predict, respond to, and prevent unplanned work to drive reliable customer experiences and protect revenue. This doesn't just apply to downtime; it also covers service degradation due to latency or other factors. But make no mistake — when things go sideways, the bottom line and the customer are impacted ...
Organizations continue to struggle to generate business value with AI. Despite increased investments in AI, only 34% of AI professionals feel fully equipped with the tools necessary to meet their organization's AI goals, according to The Unmet AI Needs Surveywas conducted by DataRobot ...