Use of artificial intelligence (AI) in digital commerce is generally considered a success, according to a survey by Gartner, Inc. About 70 percent of digital commerce organizations surveyed report that their AI projects are very or extremely successful.
Three-quarters of respondents said they are seeing double-digit improvements in the outcomes they measure. The most common metrics used to measure the business impact of AI are customer satisfaction, revenue and cost reduction. For customer satisfaction, revenue and cost reduction specifically, respondents cited improvements of 19, 15 and 15 percent, respectively.
Gartner predicts that by 2020, AI will be used by at least 60 percent of digital commerce organizations and that 30 percent of digital commerce revenue growth will be attributable to AI technologies.
“Digital commerce is fertile ground for AI technologies, thanks to an abundance of multidimensional data in both customer-facing and back-office operations,” said Sandy Shen, Research Director at Gartner.
Top Challenges
Despite early success, digital commerce organizations face significant challenges implementing AI. The survey shows that a lack of quality training data (29 percent) and in-house skills (27 percent) are the top challenges in deploying AI in digital commerce. AI skills are scarce and many organizations don’t have such skills in-house and will have to hire from outside or seek help from external partners.
On average, 43 percent of respondents chose to custom-build the solutions developed in-house or by a service provider. In comparison, 63 percent of the more successful organizations are leveraging a commercial AI solution.
“Solutions of proven performance can give you higher assurance as those have been tested in multiple deployments, and there is a dedicated team maintaining and improving the model,” said Shen.
“Organizations looking to implement AI in digital commerce need to start simple,” said Shen. “Many have high expectations for AI and set multiple business objectives for a single project, making it too complex to deliver high performance. Many also run AI projects for more than 12 months, meaning they are unable to quickly apply lessons learned from one project to another.”
On average, respondents spent $1.3 million in development for an AI project in digital commerce. However, of the more successful organizations, 52 percent spent less than $1 million on development, 20 percent spent between $1 to 2 million, and 9 percent spent more than $5 million.
To increase the likelihood of success, Gartner advises digital commerce leaders to:
■ Assess talent. If there is insufficient AI talent in-house to develop and maintain a high-performance solution, go with a commercial solution of proven performance.
■ Aim for under 12 months for a single AI project. Divide larger projects into phases and aim for under 12 months for the first phase, from planning, development and integration to complete launch.
■ Ensure enough funding. Allocate the majority of the budget to talent acquisition, data management and processing, as well as integration with existing infrastructure and processes. Enough funding also helps secure high-performance solutions.
■ Use the minimum viable product (MVP) approach. Break down complex business problems and develop targeted solutions to drive home business outcomes. Use AI to optimize existing technologies and processes rather than to try to develop breakthrough solutions.
About the Survey: Gartner conducted a survey of 307 digital commerce organizations that are currently using or piloting AI to understand the adoption, value, success and challenges of AI in digital commerce. Respondents included organizations in the U.S., Canada, Brazil, France, Germany, the U.K., Australia, New Zealand, India and China.
The Latest
APMdigest and leading IT research firm Enterprise Management Associates (EMA) are partnering to bring you the EMA-APMdigest Podcast, a new podcast focused on the latest technologies impacting IT Operations. In Episode 2 - Part 1 Pete Goldin, Editor and Publisher of APMdigest, discusses Network Observability with Shamus McGillicuddy, Vice President of Research, Network Infrastructure and Operations, at EMA ...
CIOs have stepped into the role of digital leader and strategic advisor, according to the 2023 Global CIO Survey from Logicalis ...
Synthetic monitoring is crucial to deploy code with confidence as catching bugs with E2E tests on staging is becoming increasingly difficult. It isn't trivial to provide realistic staging systems, especially because today's apps are intertwined with many third-party APIs ...
Recent EMA field research found that ServiceOps is either an active effort or a formal initiative in 78% of the organizations represented by a global panel of 400+ IT leaders. It is relatively early but gaining momentum across industries and organizations of all sizes globally ...
Managing availability and performance within SAP environments has long been a challenge for IT teams. But as IT environments grow more complex and dynamic, and the speed of innovation in almost every industry continues to accelerate, this situation is becoming a whole lot worse ...
Harnessing the power of network-derived intelligence and insights is critical in detecting today's increasingly sophisticated security threats across hybrid and multi-cloud infrastructure, according to a new research study from IDC ...
Recent research suggests that many organizations are paying for more software than they need. If organizations are looking to reduce IT spend, leaders should take a closer look at the tools being offered to employees, as not all software is essential ...
Organizations are challenged by tool sprawl and data source overload, according to the Grafana Labs Observability Survey 2023, with 52% of respondents reporting that their companies use 6 or more observability tools, including 11% that use 16 or more.
An array of tools purport to maintain availability — the trick is sorting through the noise to find the right one. Let us discuss why availability is so important and then unpack the ROI of deploying Artificial Intelligence for IT Operations (AIOps) during an economic downturn ...
Development teams so often find themselves rushing to get a release out on time. When it comes time for testing, the software works fine in the lab. But, when it's released, customers report a bunch of bugs. How does this happen? Why weren't the flaws found in QA? ...