Gartner Debunks Five Artificial Intelligence Misconceptions
March 05, 2019
Share this

IT and business leaders are often confused about what artificial intelligence (AI) can do for their organizations and are challenged by several AI misconceptions. Gartner, Inc. said IT and business leaders developing AI projects must separate reality from myths to devise their future strategies.

“With AI technology making its way into the organization, it is crucial that business and IT leaders fully understand how AI can create value for their business and where its limitations lie,” said Alexander Linden, Research VP at Gartner. “AI technologies can only deliver value if they are part of the organization’s strategy and used in the right way.”

Gartner has identified five common myths and misconceptions about AI.

Myth No.1: AI Works in the Same Way the Human Brain Does

AI is a computer engineering discipline. In its current state, it consists of software tools aimed at solving problems. While some forms of AI might give the impression of being clever, it would be unrealistic to think that current AI is similar or equivalent to human intelligence.

“Some forms of machine learning (ML) — a category of AI — may have been inspired by the human brain, but they are not equivalent,” Linden explained. “Image recognition technology, for example, is more accurate than most humans, but is of no use when it comes to solving a math problem. The rule with AI today is that it solves one task exceedingly well, but if the conditions of the task change only a bit, it fails.”

Myth No. 2: Intelligent Machines Learn on Their Own

Human intervention is required to develop an AI-based machine or system. The involvement may come from experienced human data scientists who are executing tasks such as framing the problem, preparing the data, determining appropriate datasets, removing potential bias in the training data (see myth No. 3) and — most importantly — continually updating the software to enable the integration of new knowledge and data into the next learning cycle.

Myth No. 3: AI Can Be Free of Bias

Every AI technology is based on data, rules and other kinds of input from human experts. Similar to humans, AI is also intrinsically biased in one way or the other.

“Today, there is no way to completely banish bias, however, we have to try to reduce it to a minimum,” Linden said. “In addition to technological solutions, such as diverse datasets, it is also crucial to ensure diversity in the teams working with the AI, and have team members review each other’s work. This simple process can significantly reduce selection and confirmation bias.”

Myth No. 4: AI Will Only Replace Repetitive Jobs That Don’t Require Advanced Degrees

AI enables businesses to make more accurate decisions via predictions, classifications and clustering. These abilities have allowed AI-based solutions to replace mundane tasks, but also augment remaining complex tasks.

In the financial and insurance industry, roboadvisors are being used for wealth management or fraud detection. Those capabilities don’t eliminate human involvement in those tasks but will rather have humans deal with unusual cases. With the advancement of AI in the workplace, business and IT leaders should adjust job profiles and capacity planning as well as offer retraining options for existing staff.

Myth No. 5: Not Every Business Needs an AI Strategy

Every organization should consider the potential impact of AI on its strategy and investigate how this technology can be applied to the organization’s business problems. In many ways, avoiding AI exploitation is the same as giving up the next phase of automation, which ultimately could place organizations at a competitive disadvantage.

“Even if the current strategy is ‘no AI’, this should be a conscious decision based on research and consideration. And — as every other strategy — it should be periodically revisited and changed according to the organization’s needs. AI might be needed sooner than expected,” Linden concluded.

Gartner clients can read more in “Debunking Myths and Misconceptions About Artificial Intelligence”. More information on how to define an AI strategy can be found on the Gartner AI Insight Hub.

Share this

The Latest

March 26, 2019

APM is important regardless of what platform you run your applications on. However, cloud environments can be particularly difficult for two reasons. First, there is an attitude that everything is taken care of for you. While some functions are taken care of for you, other functions will be "add-ons" that you need to purchase and append to your cloud instance ...

March 25, 2019

Data-driven applications are helping drive cloud growth, according to a survey by Unravel Data. The data also reveals that enterprises are most concerned with a lack of sufficient technical talent to properly manage these data systems as well as the perceived high cost of deploying a modern data infrastructure ...

March 21, 2019

Achieving audit compliance within your IT ecosystem can be an iterative process, and it doesn't have to be compressed into the five days before the audit is due. Following is a four-step process I use to guide clients through the process of preparing for and successfully completing IT audits ...

March 20, 2019

Network performance issues come in all shapes and sizes, and can require vast amounts of time and resources to solve. Here are three examples of painful network performance issues you're likely to encounter this year, and how NPMD solutions can help you overcome them ...

March 19, 2019

"Scale up" versus "scale out" doesn't just apply to hardware investments, it also has an impact on product features. "Scale up" promotes buying the feature set you think you need now, then adding "feature modules" and licenses as you discover additional feature requirements are needed. Often as networks grow in size they also grow in complexity ...

March 18, 2019

Network Packet Brokers play a critical role in gaining visibility into new complex networks. They deliver the packet data and information IT and security teams need to identify problems, recognize security issues, and ensure overall network performance. However, not all Packet Brokers are created equal when it comes to scalability. Simply "scaling up" your network infrastructure at every growth point is a more complex and more expensive endeavor over time. Let's explore three ways the "scale up" approach to infrastructure growth impedes NetOps and security professionals (and the business as a whole) ...

March 15, 2019

Loyal users are the key to your service desk's success. Happy users want to use your services and they recommend your services in the organization. It takes time and effort to exceed user expectations, but doing so means keeping the promises we make to our users and being careful not to do too much without careful consideration for what's best for the organization and users ...

March 14, 2019

What's the difference between user satisfaction and user loyalty? How can you measure whether your users are satisfied and will keep buying from you? How much effort should you make to offer your users the ultimate experience? If you're a service provider, what matters in the end is whether users will keep coming back to you and will stay loyal ...

March 13, 2019

What if I said that a 95% reduction in the amount of IT noise, 99% reduction in ticket volume and 99% L1 resolution rate are not only possible, but that some of the largest, most complex enterprises in the world see these metrics in their environments every day, thanks to Artificial Intelligence (AI) and Machine Learning (ML)? Would you dismiss that as belonging to the realm of science fiction? ...

March 12, 2019
As a consumer, when you order products online, how do you expect them to get delivered? Some key requirements are: the product must arrive on time, well-packed, and ultimately must give you an easy gateway to return it if it is not as per your expectations. All this has been made possible via a single application. But what if this application doesn't function the way you want or cracks down mid-way, or probably leaks off information about you to some potential hackers? Technical uncertainty and digital chaos are the two double-edged swords dangling over this billion-dollar ecommerce market. Can Quality Assurance and Software Testing save application developers from this endless juggle? ...