Gartner Debunks Five Artificial Intelligence Misconceptions
March 05, 2019
Share this

IT and business leaders are often confused about what artificial intelligence (AI) can do for their organizations and are challenged by several AI misconceptions. Gartner, Inc. said IT and business leaders developing AI projects must separate reality from myths to devise their future strategies.

“With AI technology making its way into the organization, it is crucial that business and IT leaders fully understand how AI can create value for their business and where its limitations lie,” said Alexander Linden, Research VP at Gartner. “AI technologies can only deliver value if they are part of the organization’s strategy and used in the right way.”

Gartner has identified five common myths and misconceptions about AI.

Myth No.1: AI Works in the Same Way the Human Brain Does

AI is a computer engineering discipline. In its current state, it consists of software tools aimed at solving problems. While some forms of AI might give the impression of being clever, it would be unrealistic to think that current AI is similar or equivalent to human intelligence.

“Some forms of machine learning (ML) — a category of AI — may have been inspired by the human brain, but they are not equivalent,” Linden explained. “Image recognition technology, for example, is more accurate than most humans, but is of no use when it comes to solving a math problem. The rule with AI today is that it solves one task exceedingly well, but if the conditions of the task change only a bit, it fails.”

Myth No. 2: Intelligent Machines Learn on Their Own

Human intervention is required to develop an AI-based machine or system. The involvement may come from experienced human data scientists who are executing tasks such as framing the problem, preparing the data, determining appropriate datasets, removing potential bias in the training data (see myth No. 3) and — most importantly — continually updating the software to enable the integration of new knowledge and data into the next learning cycle.

Myth No. 3: AI Can Be Free of Bias

Every AI technology is based on data, rules and other kinds of input from human experts. Similar to humans, AI is also intrinsically biased in one way or the other.

“Today, there is no way to completely banish bias, however, we have to try to reduce it to a minimum,” Linden said. “In addition to technological solutions, such as diverse datasets, it is also crucial to ensure diversity in the teams working with the AI, and have team members review each other’s work. This simple process can significantly reduce selection and confirmation bias.”

Myth No. 4: AI Will Only Replace Repetitive Jobs That Don’t Require Advanced Degrees

AI enables businesses to make more accurate decisions via predictions, classifications and clustering. These abilities have allowed AI-based solutions to replace mundane tasks, but also augment remaining complex tasks.

In the financial and insurance industry, roboadvisors are being used for wealth management or fraud detection. Those capabilities don’t eliminate human involvement in those tasks but will rather have humans deal with unusual cases. With the advancement of AI in the workplace, business and IT leaders should adjust job profiles and capacity planning as well as offer retraining options for existing staff.

Myth No. 5: Not Every Business Needs an AI Strategy

Every organization should consider the potential impact of AI on its strategy and investigate how this technology can be applied to the organization’s business problems. In many ways, avoiding AI exploitation is the same as giving up the next phase of automation, which ultimately could place organizations at a competitive disadvantage.

“Even if the current strategy is ‘no AI’, this should be a conscious decision based on research and consideration. And — as every other strategy — it should be periodically revisited and changed according to the organization’s needs. AI might be needed sooner than expected,” Linden concluded.

Gartner clients can read more in “Debunking Myths and Misconceptions About Artificial Intelligence”. More information on how to define an AI strategy can be found on the Gartner AI Insight Hub.

Share this

The Latest

November 28, 2022

Many have assumed that the mainframe is a dying entity, but instead, a mainframe renaissance is underway. Despite this notion, we are ushering in a future of more strategic investments, increased capacity, and leading innovations ...

November 22, 2022

Most (85%) consumers shop online or via a mobile app, with 59% using these digital channels as their primary holiday shopping channel, according to the Black Friday Consumer Report from Perforce Software. As brands head into a highly profitable time of year, starting with Black Friday and Cyber Monday, it's imperative development teams prepare for peak traffic, optimal channel performance, and seamless user experiences to retain and attract shoppers ...

November 21, 2022

From staffing issues to ineffective cloud strategies, NetOps teams are looking at how to streamline processes, consolidate tools, and improve network monitoring. What are some best practices that can help achieve this? Let's dive into five ...

November 18, 2022

On November 1, Taylor Swift announced the Eras Tour ... the whole world is now standing in the same virtual queue, and even the most durable cloud architecture can't handle this level of deluge ...

November 17, 2022

OpenTelemetry, a collaborative open source observability project, has introduced a new network protocol that addresses the infrastructure management headache, coupled with collector configuration options to filter and reduce data volume ...

November 16, 2022

A unified view of digital infrastructure is essential for IT teams that must improve the digital user experience while boosting overall organizational productivity, according to a survey of IT managers in the United Arab Emirates (UAE), from Riverbed and market research firm IDC ...

November 15, 2022

Building the visibility infrastructure to make cloud networks observable is a complex technical challenge. But with careful planning and a few strategic decisions, it's possible to appropriately design, set up and manage visibility solutions for the cloud ...

November 14, 2022

According to a recent IT at Work: 2022 and Beyond study, there have been a few silver linings to the pandemic ... The study revealed some intriguing trends, which will be discussed in turn ...

November 09, 2022

The absence of topology can be a key inhibitor for AIOps tools, creating blind spots for AIOps as they only have access to event data. A topology, an IT service model, or a dependency map is a real-time picture of tools and services that are connected and dependent on each other to deliver an IT service ...

November 08, 2022

A modern data stack is a suite of technologies and apps built specifically to funnel data into an organization, transform it into actionable data, build a plan for acting on that data, and then implement that plan. The majority of modern data stacks are built on cloud-based services, composed of low- and no-code tools that enable a variety of groups within an organization to explore and use their data. Read on to learn how to optimize your data stack ...