Gartner Debunks Five Artificial Intelligence Misconceptions
March 05, 2019
Share this

IT and business leaders are often confused about what artificial intelligence (AI) can do for their organizations and are challenged by several AI misconceptions. Gartner, Inc. said IT and business leaders developing AI projects must separate reality from myths to devise their future strategies.

“With AI technology making its way into the organization, it is crucial that business and IT leaders fully understand how AI can create value for their business and where its limitations lie,” said Alexander Linden, Research VP at Gartner. “AI technologies can only deliver value if they are part of the organization’s strategy and used in the right way.”

Gartner has identified five common myths and misconceptions about AI.

Myth No.1: AI Works in the Same Way the Human Brain Does

AI is a computer engineering discipline. In its current state, it consists of software tools aimed at solving problems. While some forms of AI might give the impression of being clever, it would be unrealistic to think that current AI is similar or equivalent to human intelligence.

“Some forms of machine learning (ML) — a category of AI — may have been inspired by the human brain, but they are not equivalent,” Linden explained. “Image recognition technology, for example, is more accurate than most humans, but is of no use when it comes to solving a math problem. The rule with AI today is that it solves one task exceedingly well, but if the conditions of the task change only a bit, it fails.”

Myth No. 2: Intelligent Machines Learn on Their Own

Human intervention is required to develop an AI-based machine or system. The involvement may come from experienced human data scientists who are executing tasks such as framing the problem, preparing the data, determining appropriate datasets, removing potential bias in the training data (see myth No. 3) and — most importantly — continually updating the software to enable the integration of new knowledge and data into the next learning cycle.

Myth No. 3: AI Can Be Free of Bias

Every AI technology is based on data, rules and other kinds of input from human experts. Similar to humans, AI is also intrinsically biased in one way or the other.

“Today, there is no way to completely banish bias, however, we have to try to reduce it to a minimum,” Linden said. “In addition to technological solutions, such as diverse datasets, it is also crucial to ensure diversity in the teams working with the AI, and have team members review each other’s work. This simple process can significantly reduce selection and confirmation bias.”

Myth No. 4: AI Will Only Replace Repetitive Jobs That Don’t Require Advanced Degrees

AI enables businesses to make more accurate decisions via predictions, classifications and clustering. These abilities have allowed AI-based solutions to replace mundane tasks, but also augment remaining complex tasks.

In the financial and insurance industry, roboadvisors are being used for wealth management or fraud detection. Those capabilities don’t eliminate human involvement in those tasks but will rather have humans deal with unusual cases. With the advancement of AI in the workplace, business and IT leaders should adjust job profiles and capacity planning as well as offer retraining options for existing staff.

Myth No. 5: Not Every Business Needs an AI Strategy

Every organization should consider the potential impact of AI on its strategy and investigate how this technology can be applied to the organization’s business problems. In many ways, avoiding AI exploitation is the same as giving up the next phase of automation, which ultimately could place organizations at a competitive disadvantage.

“Even if the current strategy is ‘no AI’, this should be a conscious decision based on research and consideration. And — as every other strategy — it should be periodically revisited and changed according to the organization’s needs. AI might be needed sooner than expected,” Linden concluded.

Gartner clients can read more in “Debunking Myths and Misconceptions About Artificial Intelligence”. More information on how to define an AI strategy can be found on the Gartner AI Insight Hub.

Share this

The Latest

September 27, 2023

Navigating observability pricing models can be compared to solving a perplexing puzzle which includes financial variables and contractual intricacies. Predicting all potential costs in advance becomes an elusive endeavor, exemplified by a recent eye-popping $65 million observability bill ...

September 26, 2023

Generative AI may be a great tool for the enterprise to help drive further innovation and meaningful work, but it also runs the risk of generating massive amounts of spam that will counteract its intended benefits. From increased AI spam bots to data maintenance due to large volumes of outputs, enterprise AI applications can create a cascade of issues that end up detracting from productivity gains ...

September 25, 2023

A long-running study of DevOps practices ... suggests that any historical gains in MTTR reduction have now plateaued. For years now, the time it takes to restore services has stayed about the same: less than a day for high performers but up to a week for middle-tier teams and up to a month for laggards. The fact that progress is flat despite big investments in people, tools and automation is a cause for concern ...

September 21, 2023

Companies implementing observability benefit from increased operational efficiency, faster innovation, and better business outcomes overall, according to 2023 IT Trends Report: Lessons From Observability Leaders, a report from SolarWinds ...

September 20, 2023

IT leaders are driving an increasing number of automation initiatives as a way to stay competitive, reduce costs and scale as they navigate an unpredictable social and economic environment, according to the 2023 State of Automation in IT survey conducted by Jitterbit ...

September 19, 2023

Customer loyalty is changing as retailers get increasingly competitive. More than 75% of consumers say they would end business with a company after a single bad customer experience. This means that just one price discrepancy, inventory mishap or checkout issue in a physical or digital store, could have customers running out to the next store that can provide them with better service. Retailers must be able to predict business outages in advance, and act proactively before an incident occurs, impacting customer experience ...

September 18, 2023
Digital transformation is key to ensuring companies keep up with the competitive market landscape. Putting digital at the core of a business can significantly reduce operating expenses and inefficiencies. However, this process often means changing the way internal teams work with one another. To help with the transition, this blog offers chief experience officers (CXOs) advice on how to lead a successful digital transformation project ...
September 14, 2023

Earlier this year, New Relic conducted a study on observability ... The 2023 Observability Forecast reveals observability's impact on the lives of technical professionals and businesses' bottom lines. Here are 10 key takeaways from the forecast ...

September 13, 2023
On September 10, MGM Resorts experienced what it called a "cybersecurity issue" that had a major impact on the company's systems, showing how cyberattacks can bring down applications, ultimately causing problems for a company in many ways ...
September 12, 2023

Only 33% of executives are "very confident" in their ability to operate in a public cloud environment, according to the 2023 State of CloudOps report from NetApp. This represents an increase from 2022 when only 21% reported feeling very confident ...