How IT Teams Can Unleash the True Potential of AIOps Through 5 Levels of Maturity
June 25, 2020

Sean McDermott
Windward Consulting Group

Share this

Over the last few years, the need and market for artificial intelligence for IT operations (AIOps) has grown significantly as enterprises look for solutions to scale operations while improving customer experience and overall satisfaction. As the need grows, it's predicted that 40% of organizations will implement an AIOps solution by 2022, and 55% of organizations leverage modern IT operations tools like AIOps to improve overall customer satisfaction.

While many of today's enterprises view AIOps as just another tool in the stack hoping to solve age-old problems, AIOps should be viewed as a holistic, long-term strategy. But before IT teams can envision long-term success, they must develop a foundation that both deploys modern machine learning and automation and allows them to track progress. In turn, this creates transparency throughout the organization and gives IT teams an opportunity to show their value.

I've had the opportunity to work with a number of organizations embarking on their AIOps journey. I always advise them to start by evaluating their needs and the possibilities AIOps can bring to them through five different levels of AIOps maturity. This is a strategic approach that allows enterprises to achieve complete automation for long-term success.

Here's what enterprises should know about the five levels of AIOps maturity:

Level 1: Reactive

When teams are in the first stage of AIOps maturity, siloed operations hinder communication with the rest of the business, leaving IT teams in constant reactive mode as they collect events and logs. IT teams become firefighters attempting to balance putting out internal fires while ensuring customers are satisfied. Additionally, because their time is spent solving major issues in reactive mode, they miss the opportunity to showcase their value to the rest of the business and help produce proactive strategies.

Level 2: Integrated

In the second level of AIOps maturity, operational silos become less of a barrier, and communication between IT teams and other departments becomes easier and more frequent. Additionally, data sources start to weave into a unified architecture and IT service management (ITSM) processes are improved significantly. Teams also begin to layer artificial intelligence and machine learning into the process.

Level 3: Analytical

Teams begin to reap the benefits of artificial intelligence and machine learning in the analytical level of AIOps maturity. They can define more baseline metrics to share with the rest of the organization. In turn, this gives them the opportunity to leverage data to show the overall value of IT and AIOps as it relates to overarching business goals and objectives.

Level 4: Prescriptive

By the fourth level, IT teams have nearly mastered the use of ML and automation to continue improving processes and showing value to stakeholders. In addition, the prescriptive stage optimizes the approach to ITSM processes.

Level 5: Automated

In the fifth level of AIOps maturity, full automation is implemented with little to no human interaction. Teams see complete transparency throughout the organization as they leverage ML through prescriptive models. Finally, teams are able to sit at the executive table and play a more strategic role in improving the business operations, while automation works in the background to keep the lights on.

As teams look to implement AIOps and navigate through each level of maturity, they achieve the true potential AIOps provides them, ultimately preparing them for long-term success.

Sean McDermott is the Founder of Windward Consulting Group and RedMonocle
Share this

The Latest

September 23, 2021

The Internet played a greater role than ever in supporting enterprise productivity over the past year-plus, as newly remote workers logged onto the job via residential links that, it turns out, left much to be desired in terms of enabling work ...

September 22, 2021

The world's appetite for cloud services has increased but now, more than 18 months since the beginning of the pandemic, organizations are assessing their cloud spend and trying to better understand the IT investments that were made under pressure. This is a huge challenge in and of itself, with the added complexity of embracing hybrid work ...

September 21, 2021

After a year of unprecedented challenges and change, tech pros responding to this year’s survey, IT Pro Day 2021 survey: Bring IT On from SolarWinds, report a positive perception of their roles and say they look forward to what lies ahead ...

September 20, 2021

One of the key performance indicators for IT Ops is MTTR (Mean-Time-To-Resolution). MTTR essentially measures the length of your incident management lifecycle: from detection; through assignment, triage and investigation; to remediation and resolution. IT Ops teams strive to shorten their incident management lifecycle and lower their MTTR, to meet their SLAs and maintain healthy infrastructures and services. But that's often easier said than done, with incident triage being a key factor in that challenge ...

September 16, 2021

Achieve more with less. How many of you feel that pressure — or, even worse, hear those words — trickle down from leadership? The reality is that overworked and under-resourced IT departments will only lead to chronic errors, missed deadlines and service assurance failures. After all, we're only human. So what are overburdened IT departments to do? Reduce the human factor. In a word: automate ...

September 15, 2021

On average, data innovators release twice as many products and increase employee productivity at double the rate of organizations with less mature data strategies, according to the State of Data Innovation report from Splunk ...

September 14, 2021

While 90% of respondents believe observability is important and strategic to their business — and 94% believe it to be strategic to their role — just 26% noted mature observability practices within their business, according to the 2021 Observability Forecast ...

September 13, 2021

Let's explore a few of the most prominent app success indicators and how app engineers can shift their development strategy to better meet the needs of today's app users ...

September 09, 2021

Business enterprises aiming at digital transformation or IT companies developing new software applications face challenges in developing eye-catching, robust, fast-loading, mobile-friendly, content-rich, and user-friendly software. However, with increased pressure to reduce costs and save time, business enterprises often give a short shrift to performance testing services ...

September 08, 2021

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance. Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too ...