How IT Teams Can Unleash the True Potential of AIOps Through 5 Levels of Maturity
June 25, 2020

Sean McDermott
Windward Consulting Group

Share this

Over the last few years, the need and market for artificial intelligence for IT operations (AIOps) has grown significantly as enterprises look for solutions to scale operations while improving customer experience and overall satisfaction. As the need grows, it's predicted that 40% of organizations will implement an AIOps solution by 2022, and 55% of organizations leverage modern IT operations tools like AIOps to improve overall customer satisfaction.

While many of today's enterprises view AIOps as just another tool in the stack hoping to solve age-old problems, AIOps should be viewed as a holistic, long-term strategy. But before IT teams can envision long-term success, they must develop a foundation that both deploys modern machine learning and automation and allows them to track progress. In turn, this creates transparency throughout the organization and gives IT teams an opportunity to show their value.

I've had the opportunity to work with a number of organizations embarking on their AIOps journey. I always advise them to start by evaluating their needs and the possibilities AIOps can bring to them through five different levels of AIOps maturity. This is a strategic approach that allows enterprises to achieve complete automation for long-term success.

Here's what enterprises should know about the five levels of AIOps maturity:

Level 1: Reactive

When teams are in the first stage of AIOps maturity, siloed operations hinder communication with the rest of the business, leaving IT teams in constant reactive mode as they collect events and logs. IT teams become firefighters attempting to balance putting out internal fires while ensuring customers are satisfied. Additionally, because their time is spent solving major issues in reactive mode, they miss the opportunity to showcase their value to the rest of the business and help produce proactive strategies.

Level 2: Integrated

In the second level of AIOps maturity, operational silos become less of a barrier, and communication between IT teams and other departments becomes easier and more frequent. Additionally, data sources start to weave into a unified architecture and IT service management (ITSM) processes are improved significantly. Teams also begin to layer artificial intelligence and machine learning into the process.

Level 3: Analytical

Teams begin to reap the benefits of artificial intelligence and machine learning in the analytical level of AIOps maturity. They can define more baseline metrics to share with the rest of the organization. In turn, this gives them the opportunity to leverage data to show the overall value of IT and AIOps as it relates to overarching business goals and objectives.

Level 4: Prescriptive

By the fourth level, IT teams have nearly mastered the use of ML and automation to continue improving processes and showing value to stakeholders. In addition, the prescriptive stage optimizes the approach to ITSM processes.

Level 5: Automated

In the fifth level of AIOps maturity, full automation is implemented with little to no human interaction. Teams see complete transparency throughout the organization as they leverage ML through prescriptive models. Finally, teams are able to sit at the executive table and play a more strategic role in improving the business operations, while automation works in the background to keep the lights on.

As teams look to implement AIOps and navigate through each level of maturity, they achieve the true potential AIOps provides them, ultimately preparing them for long-term success.

Sean McDermott is the Founder of Windward Consulting Group and RedMonocle
Share this

The Latest

February 25, 2021

Organizations use data to fuel their operations, make smart business decisions, improve customer relationships, and much more. Because so much value can be extracted from data its influence is generally positive, but it can also be detrimental to a business experiencing a serious disruption such as a cyberattack, insider threat, or storage platform-specific hack or bug ...

February 24, 2021

Previously siloed IT teams and technologies are converging as enterprises accelerate their modernization efforts in reaction to COVID-19, according to a study by LogicMonitor ...

February 23, 2021

You surf the internet, don't you? While all of us are at home due to Covid lock-down and accepting a new reality, the majority of the work is happening online. IT managers are looking for tools that can track the user digital experience. Executives are reading a report from Gartner or Forrester about some of the best networking monitoring solutions available on the market. Project managers are using Microsoft Teams online to communicate and ensure team members are meeting deliverables on time. Remote employees everywhere use OWA to check their office mails. No matter what, you can be quite sure that everyone is using their favorite browser and search engine for connecting online and accomplish tasks ...

February 22, 2021

With the right solutions, teams can move themselves out of the shadows of error resolution and into the light of innovation. Observability data, drawn from their systems and imbued with context from AI, lets teams automate the issues holding them back. Contextualized data and insights also give them the language to speak to the incremental, product-led approach and the direction to drive key innovations in customer experience improvement. Communicating value becomes a much easier proposition for DevOps practitioners — and they can take their seat at the company table as contributors to value ...

February 18, 2021

Prediction: Successful organizations will blur (or erase) the line between ITOps and DevOps. DevOps has to coexist with traditional IT operations ... So bring a little DevOps to every aspect of IT operations. You don't even have to call it DevOps ...

February 17, 2021

The use of unified communications and collaboration (UC&C) solutions has increased since the start of the pandemic, and this increased use has created challenges for IT teams, according to a survey commissioned by NETSCOUT SYSTEMS ...

February 16, 2021
The AI+ITOPS Podcast just hit the 10K + download mark early this month. Most people listen to entire episodes, and many engage with us by sending a note on LinkedIn, Twitter, a direct email asking questions, clarifications, strategy advice, product selection advice ...
February 11, 2021

Cloud-based innovations like microservices, containers and orchestration let developers code better, faster, but the underlying infrastructure becomes dynamic and ephemeral, and service-level interactions are hard to see. It’s a critical evolution, but the rapid change reduces visibility, predictability and control. Hence, observability ...

February 10, 2021

Companies love data. Aggregating data from multiple sources makes decision-making easier and brings a new depth of the conversation to business meetings. But all of this is at the management level. IT managers and administrators also search for data from multiple sources to ensure that the ecosystem works ...

February 09, 2021

The cost of poor software quality (CPSQ) in the US in 2020 was approximately $2.08 trillion, according to The Cost of Poor Software Quality In the US: A 2020 Report from the Consortium for Information & Software Quality (CISQ), co-sponsored by Synopsys. This includes poor software quality resulting from software failures, unsuccessful development projects, legacy system problems, technical debt and cybercrime enabled by exploitable weaknesses and vulnerabilities in software ...