Skip to main content

Finding the Needle in the Haystack: How Machine Learning Will Revolutionize Root Cause Analysis

Ajay Singh
Zebrium

When a website or app fails or falters, the standard operating procedure is to assemble a sizable team to quickly "divide and conquer" to find a solution. The details of the problem can usually be found somewhere among millions of log events and metrics, leading to slow and painstaking searches that can take hours and often involve handoffs between experts in different areas of the software. The immediate goal in these situations is not to be comprehensive, but rather to troubleshoot until you find a solution that remedies the symptom, even if the underlying root cause is not addressed.

The entire troubleshooting process takes time — generally lots and lots of it — and experience. Development teams tend to be chronically short-staffed and overworked, so adding the burden to hunt for the cause of an app problem means a substantial opportunity cost among other things. To help with the task, most companies leverage multiple best-of-breed observability tools including application performance management (APM), tracing, monitoring and log management. These are used to detect and find a solution to the problem being experienced. Although each tool provides useful data, in total, it can be hard for a person to interpret what is important and what is less so.

Instead of a disruptive and often frenzied, big team approach, this kind of challenge is a perfect application for machine learning (ML) to sift through volumes of data and find meaningful patterns or anomalies that can explain the root cause.

AIOps — using AI for IT operations — has emerged as a possible solution for correlating data from multiple tools to reduce noise and translate events into something more meaningful for a user. On the plus side, AIOps solutions are designed to handle events from a wide range of tools, making them versatile. On the negative side, most AIOps solutions require very long training periods (typically many months) against labeled data sets. These solutions also fall short, because they are designed to correlate events against known problems rather than find the root cause of new or unknown failure modes. This is a particular weakness in fast changing cloud-native environments, where new failure modes crop up on a regular basis.

In order to find the root cause of new failure modes, a different type of AI approach is needed. Since logs often contain the source of truth when a software failure occurs, one approach is to use ML on logs. The concept is to identify just the anomalous patterns in the logs that explain the details of the problem. This can be challenging since logs are mostly unstructured and "noisy." On top of that, log volumes are typically huge with data coming from many different log streams, each with a large number of log lines. Historical approaches have focused on basic anomaly detection which not only produce verbose results that require human interpretation, but also don't explain correlations across micro-services, often entirely missing key details of the problem.

It turns out, the most effective way to perform ML on logs is to use a pipeline with multiple different ML strategies depending on stage of the process. Specialized ML starts by self-learning (i.e. unsupervised) how to structure and categorize the logs — this produces a solid foundation for the remaining ML stages. Next, the ML learns the patterns of each type of log event. Once this learning has occurred, the ML system can identify anomalous log events within each log stream (events that break pattern).

Finally, to pull out the signal from the noise, the system needs to find correlations between anomalies and errors across multiple log streams. This process provides an effective way of uncovering just the sequence of log lines that describe the problem and its root cause. In doing so, it allows for accurate detection of new types of failure modes as well as the information needed to identify root cause.

Such a methodology is similar to the approach taken by skilled engineers — understanding the logs, identifying rare and high-severity events and then finding correlations between clusters of these events across multiple log streams. But it requires considerable time for humans to do this. In practice, the task would be spread out across multiple people in a divide and conquer mode in attempt to accelerate the process and lessen the load for each person. While this inherently makes sense, it creates an additional challenge of requiring team members to communicate with each other in such a way that all are aware of all anomalies and errors, and the observations and learnings are all known and shared across the group. In essence, the team needs to function as a single entity.

A multi-staged ML approach works as a single automated entity, and it should not require any manual training, whether in reviewing correlations for tuning algorithms or massaging data sets. The system should free up DevOps teams, so that they only have to respond to actual findings of root cause. A system should only need a few hours of log data to achieve proper levels of accuracy.

While AIOps is useful for reducing the overall event "noise" from the many observability tools in use in an organization, applying multi-stage unsupervised ML to logs is a great way of both detecting new types of failure modes as well as their root cause. Rather than just triaging a problem and coming up with a quick fix or workaround, the system can determine the true root cause and likely avoid other such problems in the future.

Ajay Singh is Founder and CEO of Zebrium

Hot Topics

The Latest

From smart factories and autonomous vehicles to real-time analytics and intelligent building systems, the demand for instant, local data processing is exploding. To meet these needs, organizations are leaning into edge computing. The promise? Faster performance, reduced latency and less strain on centralized infrastructure. But there's a catch: Not every network is ready to support edge deployments ...

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...

In today's fast-paced AI landscape, CIOs, IT leaders, and engineers are constantly challenged to manage increasingly complex and interconnected systems. The sheer scale and velocity of data generated by modern infrastructure can be overwhelming, making it difficult to maintain uptime, prevent outages, and create a seamless customer experience. This complexity is magnified by the industry's shift towards agentic AI ...

In MEAN TIME TO INSIGHT Episode 19, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA explains the cause of the AWS outage in October ... 

The explosion of generative AI and machine learning capabilities has fundamentally changed the conversation around cloud migration. It's no longer just about modernization or cost savings — it's about being able to compete in a market where AI is rapidly becoming table stakes. Companies that can't quickly spin up AI workloads, feed models with data at scale, or experiment with new capabilities are falling behind faster than ever before. But here's what I'm seeing: many organizations want to capitalize on AI, but they're stuck ...

On September 16, the world celebrated the 10th annual IT Pro Day, giving companies a chance to laud the professionals who serve as the backbone to almost every successful business across the globe. Despite the growing importance of their roles, many IT pros still work in the background and often go underappreciated ...

Finding the Needle in the Haystack: How Machine Learning Will Revolutionize Root Cause Analysis

Ajay Singh
Zebrium

When a website or app fails or falters, the standard operating procedure is to assemble a sizable team to quickly "divide and conquer" to find a solution. The details of the problem can usually be found somewhere among millions of log events and metrics, leading to slow and painstaking searches that can take hours and often involve handoffs between experts in different areas of the software. The immediate goal in these situations is not to be comprehensive, but rather to troubleshoot until you find a solution that remedies the symptom, even if the underlying root cause is not addressed.

The entire troubleshooting process takes time — generally lots and lots of it — and experience. Development teams tend to be chronically short-staffed and overworked, so adding the burden to hunt for the cause of an app problem means a substantial opportunity cost among other things. To help with the task, most companies leverage multiple best-of-breed observability tools including application performance management (APM), tracing, monitoring and log management. These are used to detect and find a solution to the problem being experienced. Although each tool provides useful data, in total, it can be hard for a person to interpret what is important and what is less so.

Instead of a disruptive and often frenzied, big team approach, this kind of challenge is a perfect application for machine learning (ML) to sift through volumes of data and find meaningful patterns or anomalies that can explain the root cause.

AIOps — using AI for IT operations — has emerged as a possible solution for correlating data from multiple tools to reduce noise and translate events into something more meaningful for a user. On the plus side, AIOps solutions are designed to handle events from a wide range of tools, making them versatile. On the negative side, most AIOps solutions require very long training periods (typically many months) against labeled data sets. These solutions also fall short, because they are designed to correlate events against known problems rather than find the root cause of new or unknown failure modes. This is a particular weakness in fast changing cloud-native environments, where new failure modes crop up on a regular basis.

In order to find the root cause of new failure modes, a different type of AI approach is needed. Since logs often contain the source of truth when a software failure occurs, one approach is to use ML on logs. The concept is to identify just the anomalous patterns in the logs that explain the details of the problem. This can be challenging since logs are mostly unstructured and "noisy." On top of that, log volumes are typically huge with data coming from many different log streams, each with a large number of log lines. Historical approaches have focused on basic anomaly detection which not only produce verbose results that require human interpretation, but also don't explain correlations across micro-services, often entirely missing key details of the problem.

It turns out, the most effective way to perform ML on logs is to use a pipeline with multiple different ML strategies depending on stage of the process. Specialized ML starts by self-learning (i.e. unsupervised) how to structure and categorize the logs — this produces a solid foundation for the remaining ML stages. Next, the ML learns the patterns of each type of log event. Once this learning has occurred, the ML system can identify anomalous log events within each log stream (events that break pattern).

Finally, to pull out the signal from the noise, the system needs to find correlations between anomalies and errors across multiple log streams. This process provides an effective way of uncovering just the sequence of log lines that describe the problem and its root cause. In doing so, it allows for accurate detection of new types of failure modes as well as the information needed to identify root cause.

Such a methodology is similar to the approach taken by skilled engineers — understanding the logs, identifying rare and high-severity events and then finding correlations between clusters of these events across multiple log streams. But it requires considerable time for humans to do this. In practice, the task would be spread out across multiple people in a divide and conquer mode in attempt to accelerate the process and lessen the load for each person. While this inherently makes sense, it creates an additional challenge of requiring team members to communicate with each other in such a way that all are aware of all anomalies and errors, and the observations and learnings are all known and shared across the group. In essence, the team needs to function as a single entity.

A multi-staged ML approach works as a single automated entity, and it should not require any manual training, whether in reviewing correlations for tuning algorithms or massaging data sets. The system should free up DevOps teams, so that they only have to respond to actual findings of root cause. A system should only need a few hours of log data to achieve proper levels of accuracy.

While AIOps is useful for reducing the overall event "noise" from the many observability tools in use in an organization, applying multi-stage unsupervised ML to logs is a great way of both detecting new types of failure modes as well as their root cause. Rather than just triaging a problem and coming up with a quick fix or workaround, the system can determine the true root cause and likely avoid other such problems in the future.

Ajay Singh is Founder and CEO of Zebrium

Hot Topics

The Latest

From smart factories and autonomous vehicles to real-time analytics and intelligent building systems, the demand for instant, local data processing is exploding. To meet these needs, organizations are leaning into edge computing. The promise? Faster performance, reduced latency and less strain on centralized infrastructure. But there's a catch: Not every network is ready to support edge deployments ...

Every digital customer interaction, every cloud deployment, and every AI model depends on the same foundation: the ability to see, understand, and act on data in real time ... Recent data from Splunk confirms that 74% of the business leaders believe observability is essential to monitoring critical business processes, and 66% feel it's key to understanding user journeys. Because while the unknown is inevitable, observability makes it manageable. Let's explore why ...

Organizations that perform regular audits and assessments of AI system performance and compliance are over three times more likely to achieve high GenAI value than organizations that do not, according to a survey by Gartner ...

Kubernetes has become the backbone of cloud infrastructure, but it's also one of its biggest cost drivers. Recent research shows that 98% of senior IT leaders say Kubernetes now drives cloud spend, yet 91% still can't optimize it effectively. After years of adoption, most organizations have moved past discovery. They know container sprawl, idle resources and reactive scaling inflate costs. What they don't know is how to fix it ...

Artificial intelligence is no longer a future investment. It's already embedded in how we work — whether through copilots in productivity apps, real-time transcription tools in meetings, or machine learning models fueling analytics and personalization. But while enterprise adoption accelerates, there's one critical area many leaders have yet to examine: Can your network actually support AI at the speed your users expect? ...

The more technology businesses invest in, the more potential attack surfaces they have that can be exploited. Without the right continuity plans in place, the disruptions caused by these attacks can bring operations to a standstill and cause irreparable damage to an organization. It's essential to take the time now to ensure your business has the right tools, processes, and recovery initiatives in place to weather any type of IT disaster that comes up. Here are some effective strategies you can follow to achieve this ...

In today's fast-paced AI landscape, CIOs, IT leaders, and engineers are constantly challenged to manage increasingly complex and interconnected systems. The sheer scale and velocity of data generated by modern infrastructure can be overwhelming, making it difficult to maintain uptime, prevent outages, and create a seamless customer experience. This complexity is magnified by the industry's shift towards agentic AI ...

In MEAN TIME TO INSIGHT Episode 19, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA explains the cause of the AWS outage in October ... 

The explosion of generative AI and machine learning capabilities has fundamentally changed the conversation around cloud migration. It's no longer just about modernization or cost savings — it's about being able to compete in a market where AI is rapidly becoming table stakes. Companies that can't quickly spin up AI workloads, feed models with data at scale, or experiment with new capabilities are falling behind faster than ever before. But here's what I'm seeing: many organizations want to capitalize on AI, but they're stuck ...

On September 16, the world celebrated the 10th annual IT Pro Day, giving companies a chance to laud the professionals who serve as the backbone to almost every successful business across the globe. Despite the growing importance of their roles, many IT pros still work in the background and often go underappreciated ...