Skip to main content

How Observability Helps Ingest and Normalize Data for DevOps Engineers

Richard Whitehead
Moogsoft

Humans naturally love structure. Just take books, for example. We've been ingesting and normalizing data through bookmaking since ancient times. In bookmaking, we transport, or ingest, data (in the form of text and images) from the spoken word or author's imagination to a physical structure. Covers denote the information's beginning and end, and a table of contents and chapters categorize, or normalize, the data.

The same logic applies to modern computer data. Humans prefer information that is easy to understand, and we make sense of unstructured data — whether it's text or time series data — by ingesting and normalizing it.

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance.

Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too:

How Is Data Ingested into an Observability Platform?

Solutions that provide observability with AIOps are flexible, incorporating data from a broad range of sources. These monitoring systems ingest event management data, like alerts, log events and time series data. Modern observability solutions also notify teams about system changes, which is critical considering an environmental change instigates most system failures. In the end, any data source is fair game, as long as the data tells you something about your real-time operational environment.

The data source dictates how your monitoring tool ingests the information. The first, more preferred method is a continuous data stream. The alternative is a pull mechanism, like a Prometheus pattern, which scrapes data at regular intervals. In older applications, you may have to use a creative plug-in or adapter that converts information into an accessible format and enables teams to query an application or system for data.

So why move all of this data into an observability platform? Transporting information from multiple sources and putting it into a centralized system can reveal the big picture behind the data.

How Is Data Normalized?

Once data is coming into your observability platform, it's helpful to normalize the information according to its common features. AI can extract information from unstructured data and elevate it to a feature, like a source or timestamp. These features allow you to sort or query the data or, in more sophisticated environments, apply AI-based techniques such as natural language processing (NLP).

As you normalize data, it helps to understand the incoming format and structure. If you're going to map fields and break down the message into component parts, understand what part of the message is variable and what part is static.

You can use enrichment techniques if data doesn't have a required field, appropriate feature or required information. Enrichment skirts the lack of information by finding a key to cross-reference with an external data source.

How Does Observability with AIOps Reduce Toil?

When you have normalized data, you can use AI to detect problems quickly through correlation and deduplication. Imagine if your system fails and you have to dig through hundreds of logs to see how the environment changed. That's time-consuming, not to mention boring.

Correlate, or group, data based on common characteristics like service, class or description field. Time is also handy operational information and serves as a practical classifier. Let's go back to our system failure. If you just made an environmental change, understanding the time the alerts came in helps pinpoint the problem.

Correlation can also mimic human behavior, which is a challenge for most computer systems. For example, online checkout processes are complex, with many integrated, interdependent parts. An intelligent observability tool with AIOps can correlate data alerts related to a checkout process using NLP. If that's an issue, your observability platform will group all of the alerts associated with the stem word "check," which accommodates derivations and variations like "checking," "Check," and "check out."

Let's move on to the benefits of deduplicating normalizing data. You're working and, suddenly, a "CPU overloaded" alert pops up. You start fixing the issue, but another "CPU overloaded" alert hits your inbox. And it's followed by 30 more similar alerts. That's distracting and not particularly useful.

Deduplication reduces noise and minimizes incident volumes by eliminating excessive copies of the data. Instead of the monitoring system telling you that the CPU is overloaded 32 separate times, AI compresses repeated messages into one stateful message. Deduplication can seem trivial, especially compared to techniques like NLP, but the devil is in the details. Understanding when a message indicates a new issue, rather than just a repeated message, must be considered.

Intelligent observability with AIOps centralizes data and makes it easier for teams to understand. And when these systems detect incidents, AI-enabled correlation and deduplication minimize the impact of this unplanned work. The downstream effects on DevOps practitioners and SRE teams are significant. These teams can spend less time putting out fires and more time focusing their time and attention on keeping up with the constant demand to innovate and delight customers.

Richard Whitehead is Chief Evangelist at Moogsoft

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

How Observability Helps Ingest and Normalize Data for DevOps Engineers

Richard Whitehead
Moogsoft

Humans naturally love structure. Just take books, for example. We've been ingesting and normalizing data through bookmaking since ancient times. In bookmaking, we transport, or ingest, data (in the form of text and images) from the spoken word or author's imagination to a physical structure. Covers denote the information's beginning and end, and a table of contents and chapters categorize, or normalize, the data.

The same logic applies to modern computer data. Humans prefer information that is easy to understand, and we make sense of unstructured data — whether it's text or time series data — by ingesting and normalizing it.

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance.

Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too:

How Is Data Ingested into an Observability Platform?

Solutions that provide observability with AIOps are flexible, incorporating data from a broad range of sources. These monitoring systems ingest event management data, like alerts, log events and time series data. Modern observability solutions also notify teams about system changes, which is critical considering an environmental change instigates most system failures. In the end, any data source is fair game, as long as the data tells you something about your real-time operational environment.

The data source dictates how your monitoring tool ingests the information. The first, more preferred method is a continuous data stream. The alternative is a pull mechanism, like a Prometheus pattern, which scrapes data at regular intervals. In older applications, you may have to use a creative plug-in or adapter that converts information into an accessible format and enables teams to query an application or system for data.

So why move all of this data into an observability platform? Transporting information from multiple sources and putting it into a centralized system can reveal the big picture behind the data.

How Is Data Normalized?

Once data is coming into your observability platform, it's helpful to normalize the information according to its common features. AI can extract information from unstructured data and elevate it to a feature, like a source or timestamp. These features allow you to sort or query the data or, in more sophisticated environments, apply AI-based techniques such as natural language processing (NLP).

As you normalize data, it helps to understand the incoming format and structure. If you're going to map fields and break down the message into component parts, understand what part of the message is variable and what part is static.

You can use enrichment techniques if data doesn't have a required field, appropriate feature or required information. Enrichment skirts the lack of information by finding a key to cross-reference with an external data source.

How Does Observability with AIOps Reduce Toil?

When you have normalized data, you can use AI to detect problems quickly through correlation and deduplication. Imagine if your system fails and you have to dig through hundreds of logs to see how the environment changed. That's time-consuming, not to mention boring.

Correlate, or group, data based on common characteristics like service, class or description field. Time is also handy operational information and serves as a practical classifier. Let's go back to our system failure. If you just made an environmental change, understanding the time the alerts came in helps pinpoint the problem.

Correlation can also mimic human behavior, which is a challenge for most computer systems. For example, online checkout processes are complex, with many integrated, interdependent parts. An intelligent observability tool with AIOps can correlate data alerts related to a checkout process using NLP. If that's an issue, your observability platform will group all of the alerts associated with the stem word "check," which accommodates derivations and variations like "checking," "Check," and "check out."

Let's move on to the benefits of deduplicating normalizing data. You're working and, suddenly, a "CPU overloaded" alert pops up. You start fixing the issue, but another "CPU overloaded" alert hits your inbox. And it's followed by 30 more similar alerts. That's distracting and not particularly useful.

Deduplication reduces noise and minimizes incident volumes by eliminating excessive copies of the data. Instead of the monitoring system telling you that the CPU is overloaded 32 separate times, AI compresses repeated messages into one stateful message. Deduplication can seem trivial, especially compared to techniques like NLP, but the devil is in the details. Understanding when a message indicates a new issue, rather than just a repeated message, must be considered.

Intelligent observability with AIOps centralizes data and makes it easier for teams to understand. And when these systems detect incidents, AI-enabled correlation and deduplication minimize the impact of this unplanned work. The downstream effects on DevOps practitioners and SRE teams are significant. These teams can spend less time putting out fires and more time focusing their time and attention on keeping up with the constant demand to innovate and delight customers.

Richard Whitehead is Chief Evangelist at Moogsoft

Hot Topics

The Latest

As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...

Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...