How "Predict-and-Prevent" Monitoring Software is Helping Enterprises
March 30, 2021

Girish Muckai
HEAL Software Inc.

Share this

It isn't uncommon for IT departments to be overwhelmed by alerts each week, causing alarm fatigue and making it hard for them to prioritize troubleshooting. Therefore, disruption of operations is often the first signal of IT problems, leaving enterprises to rely on an outdated break-and-fix model. This can result in significant financial and productivity losses.

Most artificial intelligence for IT operations (AIOps) tools on the market claim to use machine learning (ML) models and artificial intelligence (AI) algorithms to detect and flag incidents, perform correlation between unrelated events and provide a variety of potential root causes. However, this means remedial actions are always after the fact; and the tools are not able to eliminate downtime.

While the "break and fix" model has been the norm for most enterprises, new monitoring technology has started to take its place. The recent paradigm shift in IT operations and the diagnosis of application health has changed the focus of IT operations from quick detection and problem fixing to preventive healing, where digital enterprises prevent problems before they occur.

Preventive healing uses AI and ML to stop any possible outage by acting before it occurs. This enables IT departments to detect a likely outage, shifting teams to a "predict and prevent" approach versus the outdated "break and fix" method.

More so than simply preventing outages, predictive systems also bring value to the greater business. This technology can analyze business growth data in order to model future states of the ecosystem and determine where the capacity bottlenecks are. This data makes it possible to optimize resource deployments, reducing both capital and operating costs. Moreover, the ML model can be trained and refined further with these additional insights.

Businesses are also able to make smarter business decisions and save valuable resources when leveraging preventive healing software. Under the traditional "break and fix" model, which is focused on mitigating risk and containment, enterprises are left throwing money at problems and over-deploying resources to avoid outages. This can include paying for excess capacity to ensure redundancy, as well as assigning valuable development teams to fix problems. Shifting to "predict and prevent" allows the IT department to use their resources to support imminent problems.

Preventive healing can also help address alarm fatigue. IT teams often have a lot on their plate, so when a new alarm sounds, it can be difficult for them to address as there can be a host of potential problems. Relying on manpower to cross-analyze all the systems can make finding a problem like looking for a needle in a haystack. Preventive healing with AI technology can automatically detect anomaly signals and find the source so that a problem can be fixed before it occurs. If it cannot fix the problem, it can identify the root cause for the IT professionals, minimizing time and energy wasted on discovering issues. Early identification not only helps eliminate customer disruptions but can free the IT team up to focus on other pressing items.

Preventive healing software for IT operations uses unsupervised and supervised ML models to learn how a system works under normal circumstances and creates a dynamic baseline for the entire system and workload behavior, thereby predicting and preventing problems. However, not all software is the same.

Here are four key capabilities to look for when choosing a preventive healing software:

1. Predictive and Preventive

Some AIOps software can intelligently detect anomalies and leverage healing actions and remedial workflows to bring system parameters back to normal before an issue occurs.

2. Collective Knowledge

Because software is often connected, it is helpful to seek out a solution that is equipped with its own agents to collect workload, behavior, configuration and log data, and is comprised of a suite of APIs and connectors to integrate with most APM vendors and content formats.

3. Situational Awareness

Preempting an outage or issue is complex and requires detailed algorithms and 24x7 monitoring, well beyond the scope of even the best IT professionals. Some technology uses contextual data at the time of the anomaly – including forensic data capturing the state of the processes/queries running on the system at the time. This data can be used to determine causation and ensure that responses are coherent and complete.

4. Remedial and Autonomous

New technology can provide remedial actions in two scenarios: By 1) scaling up to handle the workload and 2) triggering autonomous correction of underlying issues that cause anomalies. Look for a solution that has intelligent ML engine techniques to ensure it always delivers the best response to the problem.

As IT continues to move to a multi-cloud environment, it is the perfect time for adopters and decision-makers to assess the gaps in their current IT offerings. Moving from the "break and fix" to "predict and prevent" model is the only way to provide confidence that a company's IT infrastructure is up and running all the time and applications are available 24x7.

Girish Muckai is Chief Sales and Marketing Officer at HEAL Software Inc.
Share this

The Latest

September 23, 2021

The Internet played a greater role than ever in supporting enterprise productivity over the past year-plus, as newly remote workers logged onto the job via residential links that, it turns out, left much to be desired in terms of enabling work ...

September 22, 2021

The world's appetite for cloud services has increased but now, more than 18 months since the beginning of the pandemic, organizations are assessing their cloud spend and trying to better understand the IT investments that were made under pressure. This is a huge challenge in and of itself, with the added complexity of embracing hybrid work ...

September 21, 2021

After a year of unprecedented challenges and change, tech pros responding to this year’s survey, IT Pro Day 2021 survey: Bring IT On from SolarWinds, report a positive perception of their roles and say they look forward to what lies ahead ...

September 20, 2021

One of the key performance indicators for IT Ops is MTTR (Mean-Time-To-Resolution). MTTR essentially measures the length of your incident management lifecycle: from detection; through assignment, triage and investigation; to remediation and resolution. IT Ops teams strive to shorten their incident management lifecycle and lower their MTTR, to meet their SLAs and maintain healthy infrastructures and services. But that's often easier said than done, with incident triage being a key factor in that challenge ...

September 16, 2021

Achieve more with less. How many of you feel that pressure — or, even worse, hear those words — trickle down from leadership? The reality is that overworked and under-resourced IT departments will only lead to chronic errors, missed deadlines and service assurance failures. After all, we're only human. So what are overburdened IT departments to do? Reduce the human factor. In a word: automate ...

September 15, 2021

On average, data innovators release twice as many products and increase employee productivity at double the rate of organizations with less mature data strategies, according to the State of Data Innovation report from Splunk ...

September 14, 2021

While 90% of respondents believe observability is important and strategic to their business — and 94% believe it to be strategic to their role — just 26% noted mature observability practices within their business, according to the 2021 Observability Forecast ...

September 13, 2021

Let's explore a few of the most prominent app success indicators and how app engineers can shift their development strategy to better meet the needs of today's app users ...

September 09, 2021

Business enterprises aiming at digital transformation or IT companies developing new software applications face challenges in developing eye-catching, robust, fast-loading, mobile-friendly, content-rich, and user-friendly software. However, with increased pressure to reduce costs and save time, business enterprises often give a short shrift to performance testing services ...

September 08, 2021

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance. Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too ...