How to Build the Best Predictive Analytics Team
August 01, 2018

Vinod Peris
CA Technologies

Share this

Modern enterprise growth is heavily reliant on an organization's ability to assess past IT events to then look forward, anticipate and prevent service failures from happening. This is the crux of predictive analytics. Today's fast-moving enterprises have data and expertise locked up in siloed organizations, making it difficult to extract actionable insights, which inevitably impacts the scale, size and speed of a company's growth. 

There are two parts to successfully implementing a predictive analytics practice. The first is tech enabled: an open, scalable and unified way to collect, search, aggregate and analyze millions of metrics and logs across networks, infrastructure and applications. The second is talent enabled: finding the right skills to develop insights with domain-specific context for each business unit to carry forward.
 
The second part is one that most organizations struggle with. Do we build a dedicated, highly specialized team? Do we use a consultant or develop in-house talent? Do we train a cohort of non-IT employees on a licensed platform or do we reserve those capabilities solely for the IT department?

The following are steps to build the best predictive analytics team:

Identify the right representation of expertise

Just like building an app requires a marriage of design experts and full stack developers, a good analytics team needs to start with a mix of domain experts and data scientists. Once they have established some of the basic parameters, you can integrate developers into the mix. Depending on how accessible the data is, developers could provide data scientists with the tools to run the most optimal machine learning algorithms.

Use existing in-house talent and build additional support

There isn't always a need for a separate "predictive analytics team." Integrate data scientists into the functional teams and provide them with access to the data and ensure they can consult with domain experts. If you have multiple groups across the company, create an overlay team (or guild) of data scientists so that they have a forum for knowledge sharing, especially on the latest developments in AI/ML.

Recruit unconventional talent

Data scientists are in high demand, and while it's easier to find them in the hot tech markets of Silicon Valley and Boston, you will face tough competition in attracting and retaining new talent. So, rather than looking in traditional fields like Computer Science and Statistics, cast a wider net to include quantitative fields like Physics, Chemistry, Economics, Biostatistics, etc.

Set a framework to iterate upon

1. Assess the problem.

2. Compile and correlate all relevant data to the said problem.

3. Identify all needed tools for analyzing the data (machine learning, etc.)

4. Make data available to domain experts so you can evaluate the results and iterate on the assumptions.

Include employees outside of the tech walls

Once you have initial results, take the time to share and validate it across the organization. Input from support and services will go a long way in validating the results and gaining further insight into the data. For example, if a company is seeking to improve customer renewal health, share the dashboards/results that you generate with the customer success team so that they utilize this knowledge to improve renewals. Validate the outcome and make tweaks to improve the end-to-end process.

A notable value of predictive analytics is the ability to identify trends and patterns and to formulate different questions. These outputs will inevitably require more analysis and lead you down the path of discovery. So, the more cohesive and responsive your predictive analytics team is, the more poised your company is for dynamic growth.

Vinod Peris is SVP of Engineering, Central Software Group, CA Technologies
Share this

The Latest

July 09, 2020

Enterprises that halted their cloud migration journey during the current global pandemic are two and a half times more likely than those that continued their move to the cloud to have experienced IT outages that negatively impacted their SLAs, according to Virtana's latest survey report The Current State of Hybrid Cloud and IT ...

July 08, 2020

Every business has the responsibility to do their part against climate change by reducing their carbon footprint while increasing sustainability and efficiency. Harnessing optimization of IT infrastructure is one method companies can use to reduce carbon footprint, improve sustainability and increase business efficiency, while also keeping costs down ...

July 07, 2020

While the adoption of continuous integration (CI) is on the rise, software engineering teams are unable to take a zero-tolerance approach to software failures, costing enterprise organizations billions annually, according to a quantitative study conducted by Undo and a Cambridge Judge Business School MBA project ...

June 25, 2020

I've had the opportunity to work with a number of organizations embarking on their AIOps journey. I always advise them to start by evaluating their needs and the possibilities AIOps can bring to them through five different levels of AIOps maturity. This is a strategic approach that allows enterprises to achieve complete automation for long-term success ...

June 24, 2020

Sumo Logic recently commissioned an independent market research study to understand the industry momentum behind continuous intelligence — and the necessity for digital organizations to embrace a cloud-native, real-time continuous intelligence platform to support the speed and agility of business for faster decision-making, optimizing security, driving new innovation and delivering world-class customer experiences. Some of the key findings include ...

June 23, 2020

When it comes to viruses, it's typically those of the computer/digital variety that IT is concerned about. But with the ongoing pandemic, IT operations teams are on the hook to maintain business functions in the midst of rapid and massive change. One of the biggest challenges for businesses is the shift to remote work at scale. Ensuring that they can continue to provide products and services — and satisfy their customers — against this backdrop is challenging for many ...

June 22, 2020

Teams tasked with developing and delivering software are under pressure to balance the business imperative for speed with high customer expectations for quality. In the course of trying to achieve this balance, engineering organizations rely on a variety of tools, techniques and processes. The 2020 State of Software Quality report provides a snapshot of the key challenges organizations encounter when it comes to delivering quality software at speed, as well as how they are approaching these hurdles. This blog introduces its key findings ...

June 18, 2020

For IT teams, run-the-business, commodity areas such as employee help desks, device support and communication platforms are regularly placed in the crosshairs for cost takeout, but these areas are also highly visible to employees. Organizations can improve employee satisfaction and business performance by building unified functions that are measured by employee experience rather than price. This approach will ultimately fund transformation, as well as increase productivity and innovation ...

June 17, 2020

In the agile DevOps framework, there is a vital piece missing; something that previous approaches to application development did well, but has since fallen by the wayside. That is, the post-delivery portion of the toolchain. Without continuous cloud optimization, the CI/CD toolchain still produces massive inefficiencies and overspend ...

June 16, 2020

The COVID-19 pandemic has exponentially accelerated digital transformation projects. To better understand where IT professionals are turning for help, we analyzed the online behaviors of IT decision-makers. Our research found an increase in demand for resources related to APM, microservices and dependence on cloud services ...