How to Build the Best Predictive Analytics Team
August 01, 2018

Vinod Peris
CA Technologies

Share this

Modern enterprise growth is heavily reliant on an organization's ability to assess past IT events to then look forward, anticipate and prevent service failures from happening. This is the crux of predictive analytics. Today's fast-moving enterprises have data and expertise locked up in siloed organizations, making it difficult to extract actionable insights, which inevitably impacts the scale, size and speed of a company's growth. 

There are two parts to successfully implementing a predictive analytics practice. The first is tech enabled: an open, scalable and unified way to collect, search, aggregate and analyze millions of metrics and logs across networks, infrastructure and applications. The second is talent enabled: finding the right skills to develop insights with domain-specific context for each business unit to carry forward.
 
The second part is one that most organizations struggle with. Do we build a dedicated, highly specialized team? Do we use a consultant or develop in-house talent? Do we train a cohort of non-IT employees on a licensed platform or do we reserve those capabilities solely for the IT department?

The following are steps to build the best predictive analytics team:

Identify the right representation of expertise

Just like building an app requires a marriage of design experts and full stack developers, a good analytics team needs to start with a mix of domain experts and data scientists. Once they have established some of the basic parameters, you can integrate developers into the mix. Depending on how accessible the data is, developers could provide data scientists with the tools to run the most optimal machine learning algorithms.

Use existing in-house talent and build additional support

There isn't always a need for a separate "predictive analytics team." Integrate data scientists into the functional teams and provide them with access to the data and ensure they can consult with domain experts. If you have multiple groups across the company, create an overlay team (or guild) of data scientists so that they have a forum for knowledge sharing, especially on the latest developments in AI/ML.

Recruit unconventional talent

Data scientists are in high demand, and while it's easier to find them in the hot tech markets of Silicon Valley and Boston, you will face tough competition in attracting and retaining new talent. So, rather than looking in traditional fields like Computer Science and Statistics, cast a wider net to include quantitative fields like Physics, Chemistry, Economics, Biostatistics, etc.

Set a framework to iterate upon

1. Assess the problem.

2. Compile and correlate all relevant data to the said problem.

3. Identify all needed tools for analyzing the data (machine learning, etc.)

4. Make data available to domain experts so you can evaluate the results and iterate on the assumptions.

Include employees outside of the tech walls

Once you have initial results, take the time to share and validate it across the organization. Input from support and services will go a long way in validating the results and gaining further insight into the data. For example, if a company is seeking to improve customer renewal health, share the dashboards/results that you generate with the customer success team so that they utilize this knowledge to improve renewals. Validate the outcome and make tweaks to improve the end-to-end process.

A notable value of predictive analytics is the ability to identify trends and patterns and to formulate different questions. These outputs will inevitably require more analysis and lead you down the path of discovery. So, the more cohesive and responsive your predictive analytics team is, the more poised your company is for dynamic growth.

Vinod Peris is SVP of Engineering, Central Software Group, CA Technologies
Share this

The Latest

December 12, 2019

Industry experts offer thoughtful, insightful, and often controversial predictions on how APM and related technologies will evolve and impact business in 2020. Part 2 covers AIOps, AI and Machine Learning (ML) ...

December 11, 2019

As the New Year approaches, it is time for APMdigest's 10th annual list of Application Performance Management (APM) predictions. Industry experts offer thoughtful, insightful, and often controversial predictions on how APM and related technologies will evolve and impact business in 2020 ...

December 10, 2019

Enterprises with services operating in the cloud are overspending by millions due to inefficiencies with their apps and runtime environments, according to a poll conducted by Lead to Market, and commissioned by Opsani. 69 Percent of respondents report regularly overspending on their cloud budget by 25 percent or more, leading to a loss of millions on unnecessary cloud spend ...

December 09, 2019

For IT professionals responsible for upgrading users to Windows 10, it's crunch time. End of regular support for Windows 7 is nearly here (January 14, 2020) but as many as 59% say that only a portion of their users have been migrated to Windows 10 ...

December 05, 2019

Application performance monitoring (APM) has become one of the key strategies adopted by IT teams and application owners in today’s era of digital business services. Application downtime has always been considered adverse to business productivity. But in today’s digital economy, what is becoming equally dreadful is application slowdown. When an application is slow, the end user’s experience accessing the application is negatively affected leaving a dent on the business in terms of commercial loss and brand damage ...

December 04, 2019

Useful digital transformation means altering or designing new business processes, and implementing them via the people and technology changes needed to support these new business processes ...

December 03, 2019
The word "digital" is today thrown around in word and phrase like rice at a wedding and never do two utterances thereof have the same meaning. Common phrases like "digital skills" and "digital transformation" are explained in 101 different ways. The outcome of this is a predictable cycle of confusion, especially at business management level where often the answer to business issues is "more technology" ...
December 02, 2019

xMatters recently released the results of its Incident Management in the Age of Customer-Centricity research study to better understand the range of various incident management practices and how the increased focus on customer experience has caused roles across an organization to evolve. Findings highlight the ongoing challenges organizations face as they continue to introduce and rapidly evolve digital services ...

November 26, 2019

The new App Attention Index Report from AppDynamics finds that consumers are using an average 32 digital services every day — more than four times as many as they realize. What's more, their use of digital services has evolved from a conscious decision to carry around a device and use it for a specific task, to an unconscious and automated behavior — a digital reflex. So what does all this mean for the IT teams driving application performance on the backend? Bottom line: delivering seamless and world-class digital experiences is critical if businesses want to stay relevant and ensure long-term customer loyalty. Here are some key considerations for IT leaders and developers to consider ...

November 25, 2019

Through the adoption of agile technologies, financial firms can begin to use software to both operate more effectively and be faster to market with improvements for customer experiences. Making sure there is the necessary software in place to give customers frictionless everyday activities, like remote deposits, business overdraft services and wealth management, is key for a positive customer experience ...