How to Build the Best Predictive Analytics Team
August 01, 2018

Vinod Peris
CA Technologies

Share this

Modern enterprise growth is heavily reliant on an organization's ability to assess past IT events to then look forward, anticipate and prevent service failures from happening. This is the crux of predictive analytics. Today's fast-moving enterprises have data and expertise locked up in siloed organizations, making it difficult to extract actionable insights, which inevitably impacts the scale, size and speed of a company's growth. 

There are two parts to successfully implementing a predictive analytics practice. The first is tech enabled: an open, scalable and unified way to collect, search, aggregate and analyze millions of metrics and logs across networks, infrastructure and applications. The second is talent enabled: finding the right skills to develop insights with domain-specific context for each business unit to carry forward.
 
The second part is one that most organizations struggle with. Do we build a dedicated, highly specialized team? Do we use a consultant or develop in-house talent? Do we train a cohort of non-IT employees on a licensed platform or do we reserve those capabilities solely for the IT department?

The following are steps to build the best predictive analytics team:

Identify the right representation of expertise

Just like building an app requires a marriage of design experts and full stack developers, a good analytics team needs to start with a mix of domain experts and data scientists. Once they have established some of the basic parameters, you can integrate developers into the mix. Depending on how accessible the data is, developers could provide data scientists with the tools to run the most optimal machine learning algorithms.

Use existing in-house talent and build additional support

There isn't always a need for a separate "predictive analytics team." Integrate data scientists into the functional teams and provide them with access to the data and ensure they can consult with domain experts. If you have multiple groups across the company, create an overlay team (or guild) of data scientists so that they have a forum for knowledge sharing, especially on the latest developments in AI/ML.

Recruit unconventional talent

Data scientists are in high demand, and while it's easier to find them in the hot tech markets of Silicon Valley and Boston, you will face tough competition in attracting and retaining new talent. So, rather than looking in traditional fields like Computer Science and Statistics, cast a wider net to include quantitative fields like Physics, Chemistry, Economics, Biostatistics, etc.

Set a framework to iterate upon

1. Assess the problem.

2. Compile and correlate all relevant data to the said problem.

3. Identify all needed tools for analyzing the data (machine learning, etc.)

4. Make data available to domain experts so you can evaluate the results and iterate on the assumptions.

Include employees outside of the tech walls

Once you have initial results, take the time to share and validate it across the organization. Input from support and services will go a long way in validating the results and gaining further insight into the data. For example, if a company is seeking to improve customer renewal health, share the dashboards/results that you generate with the customer success team so that they utilize this knowledge to improve renewals. Validate the outcome and make tweaks to improve the end-to-end process.

A notable value of predictive analytics is the ability to identify trends and patterns and to formulate different questions. These outputs will inevitably require more analysis and lead you down the path of discovery. So, the more cohesive and responsive your predictive analytics team is, the more poised your company is for dynamic growth.

Vinod Peris is SVP of Engineering, Central Software Group, CA Technologies
Share this

The Latest

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...

February 15, 2024

In a time where we're constantly bombarded with new buzzwords and technological advancements, it can be challenging for businesses to determine what is real, what is useful, and what they truly need. Over the years, we've witnessed the rise and fall of various tech trends, such as the promises (and fears) of AI becoming sentient and replacing humans to the declaration that data is the new oil. At the end of the day, one fundamental question remains: How can companies navigate through the tech buzz and make informed decisions for their future? ...

February 14, 2024

We increasingly see companies using their observability data to support security use cases. It's not entirely surprising given the challenges that organizations have with legacy SIEMs. We wanted to dig into this evolving intersection of security and observability, so we surveyed 500 security professionals — 40% of whom were either CISOs or CSOs — for our inaugural State of Security Observability report ...

February 13, 2024

Cloud computing continues to soar, with little signs of slowing down ... But, as with any new program, companies are seeing substantial benefits in the cloud but are also navigating budgetary challenges. With an estimated 94% of companies using cloud services today, priorities for IT teams have shifted from purely adoption-based to deploying new strategies. As they explore new territories, it can be a struggle to exploit the full value of their spend and the cloud's transformative capabilities ...

February 12, 2024

What will the enterprise of the future look like? If we asked this question three years ago, I doubt most of us would have pictured today as we know it: a future where generative AI has become deeply integrated into business and even our daily lives ...

February 09, 2024

With a focus on GenAI, industry experts offer predictions on how AI will evolve and impact IT and business in 2024. Part 5, the final installment in this series, covers the advantages AI will deliver: Generative AI will become increasingly important for resolving complicated data integration challenges, essentially providing a natural-language intermediary between data endpoints ...

February 08, 2024

With a focus on GenAI, industry experts offer predictions on how AI will evolve and impact IT and business in 2024. Part 4 covers the challenges of AI: In the short term, the rapid development and adoption of AI tools and products leveraging AI services will lead to an increase in biased outputs ...