How to Build the Best Predictive Analytics Team
August 01, 2018

Vinod Peris
CA Technologies

Share this

Modern enterprise growth is heavily reliant on an organization's ability to assess past IT events to then look forward, anticipate and prevent service failures from happening. This is the crux of predictive analytics. Today's fast-moving enterprises have data and expertise locked up in siloed organizations, making it difficult to extract actionable insights, which inevitably impacts the scale, size and speed of a company's growth. 

There are two parts to successfully implementing a predictive analytics practice. The first is tech enabled: an open, scalable and unified way to collect, search, aggregate and analyze millions of metrics and logs across networks, infrastructure and applications. The second is talent enabled: finding the right skills to develop insights with domain-specific context for each business unit to carry forward.
 
The second part is one that most organizations struggle with. Do we build a dedicated, highly specialized team? Do we use a consultant or develop in-house talent? Do we train a cohort of non-IT employees on a licensed platform or do we reserve those capabilities solely for the IT department?

The following are steps to build the best predictive analytics team:

Identify the right representation of expertise

Just like building an app requires a marriage of design experts and full stack developers, a good analytics team needs to start with a mix of domain experts and data scientists. Once they have established some of the basic parameters, you can integrate developers into the mix. Depending on how accessible the data is, developers could provide data scientists with the tools to run the most optimal machine learning algorithms.

Use existing in-house talent and build additional support

There isn't always a need for a separate "predictive analytics team." Integrate data scientists into the functional teams and provide them with access to the data and ensure they can consult with domain experts. If you have multiple groups across the company, create an overlay team (or guild) of data scientists so that they have a forum for knowledge sharing, especially on the latest developments in AI/ML.

Recruit unconventional talent

Data scientists are in high demand, and while it's easier to find them in the hot tech markets of Silicon Valley and Boston, you will face tough competition in attracting and retaining new talent. So, rather than looking in traditional fields like Computer Science and Statistics, cast a wider net to include quantitative fields like Physics, Chemistry, Economics, Biostatistics, etc.

Set a framework to iterate upon

1. Assess the problem.

2. Compile and correlate all relevant data to the said problem.

3. Identify all needed tools for analyzing the data (machine learning, etc.)

4. Make data available to domain experts so you can evaluate the results and iterate on the assumptions.

Include employees outside of the tech walls

Once you have initial results, take the time to share and validate it across the organization. Input from support and services will go a long way in validating the results and gaining further insight into the data. For example, if a company is seeking to improve customer renewal health, share the dashboards/results that you generate with the customer success team so that they utilize this knowledge to improve renewals. Validate the outcome and make tweaks to improve the end-to-end process.

A notable value of predictive analytics is the ability to identify trends and patterns and to formulate different questions. These outputs will inevitably require more analysis and lead you down the path of discovery. So, the more cohesive and responsive your predictive analytics team is, the more poised your company is for dynamic growth.

Vinod Peris is SVP of Engineering, Central Software Group, CA Technologies
Share this

The Latest

March 31, 2020

Organizations face major infrastructure and security challenges in supporting multi-cloud and edge deployments, according to new global survey conducted by Propeller Insights for Volterra ...

March 30, 2020

Developers spend roughly 17.3 hours each week debugging, refactoring and modifying bad code — valuable time that could be spent writing more code, shipping better products and innovating. The bottom line? Nearly $300B (US) in lost developer productivity every year ...

March 26, 2020

While remote work policies have been gaining steam for the better part of the past decade across the enterprise space — driven in large part by more agile and scalable, cloud-delivered business solutions — recent events have pushed adoption into overdrive ...

March 25, 2020

Time-critical, unplanned work caused by IT disruptions continues to plague enterprises around the world, leading to lost revenue, significant employee morale problems and missed opportunities to innovate, according to the State of Unplanned Work Report 2020, conducted by Dimensional Research for PagerDuty ...

March 24, 2020

In today's iterative world, development teams care a lot more about how apps are running. There's a demand for fixing actionable items. Developers want to know exactly what's broken, what to fix right now, and what can wait. They want to know, "Do we build or fix?" This trade-off between building new features versus fixing bugs is one of the key factors behind the adoption of Application Stability management tools ...

March 23, 2020

With the rise of mobile apps and iterative development releases, Application Stability has answered the widespread need to monitor applications in a new way, shifting the focus from servers and networks to the customer experience. The emergence of Application Stability has caused some consternation for diehard APM fans. However, these two solutions embody very distinct monitoring focuses, which leads me to believe there's room for both tools, as well as different teams for both ...

March 19, 2020

The 2019 State of E-Commerce Infrastructure Report, from Webscale, analyzes findings from a comprehensive survey of more than 450 ecommerce professionals regarding how their online stores performed during the 2019 holiday season. Some key insights from the report include ...

March 18, 2020

Robinhood is a unicorn startup that has been disrupting the way by which many millennials have been investing and managing their money for the past few years. For Robinhood, the burden of proof was to show that they can provide an infrastructure that is as scalable, reliable and secure as that of major banks who have been developing their trading infrastructure for the last quarter-century. That promise fell flat last week, when the market volatility brought about a set of edge cases that brought Robinhood's trading app to its knees ...

March 17, 2020

Application backend monitoring is the key to acquiring visibility across the enterprise's application stack, from the application layer and underlying infrastructure to third-party API services, web servers and databases, be they on-premises, in a public or private cloud, or in a hybrid model. By tracking and reporting performance in real time, IT teams can ensure applications perform at peak efficiency — and guarantee a seamless customer experience. How can IT operations teams improve application backend monitoring? By embracing artificial intelligence for operations — AIOps ...

March 16, 2020

In 2020, DevOps teams will face heightened expectations for higher speed and frequency of code delivery, which means their IT environments will become even more modular, ephemeral and dynamic — and significantly more complicated to monitor. As a result, AIOps will further cement its position as the most effective technology that DevOps teams can use to see and control what's going on with their applications and their underlying infrastructure, so that they can prevent outages. Here I outline five key trends to watch related to how AIOps will impact DevOps in 2020 and beyond ...