How To Drive and Measure User Experience - Part 1
September 18, 2019

Ron van Haasteren
TOPdesk

Share this

Service desks teams use internally focused performance-based metrics more than many might think. These metrics are essential and remain relevant, but they do not provide any insight into the user experience. To gain actual insight into user satisfaction, you need to change your metrics. The question becomes: How do I efficiently change my metrics? Then, how do you best go about it?

Living in the Age of Customer Experience

The customer experience is vital to the outcomes of your service team. The word "experience" is critical. The quality of the user experiences is paramount.

When we look at our internal customers — our employees — their expectations are continually changing. For them, they want to stay in the flow, remain productive, and make meaningful progress in their work.

Customer experience is the sum of the employees' perceptions of working in an organization, "perception" being most important. To understand the experience, service desk members must ask their users to define their experiences. Part of this journey is managing the emotional parts of the customer journey. However, even if you meet expectations, but somehow, the emotional experience goes south. Then, while the issue may have gotten resolved, this doesn't mean the user is happy. Perceptions are not the same as results. So, even if the service desk meets all pre-defined success metrics, this doesn't mean user satisfaction is excellent.

Taking the pulse of the user is vital to organizational success.

What is the User's Experience?

The service desk delivers support to users, but they must measure the services provided and which are the most important to them. When measuring the user experience, you may find that your services need improvement.

For example, one organization I recently worked with let their customers ask them questions whenever they needed assistance. Thus, users found that the service desk remained open for users, who soon understood that their concerns were always valid; this only occurred because the service desk asked users how to support them best.

There are likely dozens of things that your department can address, but the team can't handle everything at once. Start with what's most important to the user so they can experience the best benefit for your effort. You can achieve this in several ways. For example, consider focus groups. These are what you think they are: teams sitting down with a group of users to ask them about the services provided. You are asking about specific goals and measuring outcomes.

Even though these groups can be a good starting point if you have nothing in place and can be easy to implement, they can require a fair amount of trust otherwise these groups can turn them into ranting sessions. Get through the negativity to regain confidence before diving into what you want out of these focus groups.

Periodic Measurements and Continuous Measurements

Periodic measurement is examining your services regularly, through a survey, for example. Alternatively, continuous measurement is the use of a brief survey to ask for feedback from customers about the services they just received after every interaction. Periodic measurement only provides a general overview of aspects that apply to multiple services, such as how friendly the department is and how well the communication is. These assessments are a great place to start because they help provide a picture in terms of user experience.

Because periodic measurements can be pretty general, how you phrase your survey questions to users matters. "How do you rate our services?" will not suffice. You must dive into various aspects or themes of the service so that you can gauge authentic user experience.

There are usually five main themes that the customer thinks of when experiencing a service ...

Read How To Drive and Measure User Experience - Part 2, covering the five main themes and more.

Ron van Haasteren is the Global Culture Strategist at TOPdesk
Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...