Skip to main content

Hyper-Automation: IT's Path to Edge Self-Reliance

Rex McMillan

A distributed, remote workforce is the new business reality. How can businesses keep operations going smoothly and quickly resolve issues when IT staff is in San Jose, employee A is working remotely in Denver at their home and employee B is a salesperson still doing some road traveling? The key is an IT architecture that promotes and supports "self-healing" at the endpoint to take care of issues before they impact employees. The essential element to achieve this is hyper-automation.

According to Gartner, "Hyper-automation refers to the combination of multiple machine learning, packaged software and automation tools to deliver work."

Businesses, notably IT and help desk administrative staff, are fully aware that becoming more self-reliant at the endpoint by integrating hyper-automation is one of the paths to stabilizing business productivity in the new work reality.

Getting to hyper-automation means evolving from basic workflow automation to augmented Artificial Intelligence (AI) and machine learning [conversational bots], then to a confluence of hyper-automation with deep learning capabilities. AI and machine learning, for example, enables self-healing by predicting and proactively fixing an issue at the endpoint before it disrupts performance.

The Autonomous Worker

Hyper-automation benefits all employees, wherever they are working, by supporting a consumer-grade experience at the endpoint. All devices employees use can be detected, diagnosed and auto-remediated for any security or compliance issues, without interrupting the employee's work.

It also is a significant budget lowering and time saving benefit to IT staff faced with managing a more diversified work environment without having to add more employees. Most importantly, it takes an enormous burden off of help desk teams as self-healing solutions can enable endpoints to heal themselves. Given the more flexible hours around-the-clock that remote workers tend to follow, self-healing lets a night owl work trouble-free at midnight, or an early bird finish a sales report at 5 a.m. without an IT hiccup preventing them from shipping the report.

Autonomous working really can only be achieved with moving IT problem resolution via self-healing to the edge. In fact, today hyper-automated platforms can self-heal close to 70% of edge and endpoint device issues — protecting users, securing data and optimizing user experiences without any human intervention.

The Secure, Autonomous Edge

IT and help desk staff need to also ensure data security along with providing self-healing for the autonomous edge. An uptick in remote working, and endpoints put into service that may not have been properly vetted, may have helped contribute to more security headaches: 66% of IT professionals reported an increase in security issues during the spring of 2020.

To maintain tight security, regardless of device or location, hyper-automation can accomplish this with "adaptive security." Using AI and machine learning — continuously sensing, discovering, and detecting security issues — IT can prevent rogue devices, for example, from disrupting the network. Issues can be prioritized based on machine learning enabled, predictive cognition. Self-healing then kicks in, remediating issues proactively before the end user even realizes there was an issue.

The Rationale for Hyper-Automation

AI. Machine learning. Automation. Bots. Is it worth it for IT and help desk teams to embrace more technology solutions in a business environment already crowded with hybrid-cloud computing, BYOD devices, and a host of data applications?

There are many reasons why the answer is yes. Apart from performance enhancement, security benefits and user productivity, there is a quantifiable ROI business value to deploying hyper-automation. When using hyper-automation to discover, manage, secure and service devices across an enterprise, we've seen customers reduce unplanned device outages up to 63%, reduce time to deploy security updates by 88% or even resolve up to 80% of endpoint issues before users report them. Business continuity is the ultimate ROI and hyper-automation directly contributes to an uninterrupted workflow.

The Path to the Autonomous Edge

Integrating hyper-automation into the IT architecture needs to start with looking at the need. What issues consume the most help-desk time?

How many of those could be proactively resolved using AI and machine learning to troubleshoot and fix the problem?

Then IT needs to have a complete picture of all the endpoints under their supervision, along with associated software and peripherals.

With the goal of a satisfying, secure user experience, the next step is to identify the optimal configuration and performance settings. Even more ideal is to personalize the experience for the end-user to make their workspace familiar and productive. Once the optimal settings to keep a device and user workspace secure and productive are identified IT staff can then automate detecting if the device drifts from that optimal state and return it back, keeping the workspace secure and productive.

Hyper-automation, using built-in AI with bots, can also take more sophisticated actions that contribute to ROI. IT can work with finance and operations teams to identify where integrating more AI can improve budget control and performance. Possibilities include assessing asset inventory in real-time, validating security configurations across a broadly dispersed or remote device estate, or even self-heal issues such as configuration drift, performance or compliance issues.

The Self-Reliant Future

Today's hyper-automated platforms, based on our experience, are delivering up to 70% self-healing for edge and endpoint devices. However, that may reach 100% autonomy over the next few years. The autonomous worker, using a device remotely, will no longer rely on a help desk to fix issues but feel confident the hyper-automation tools in place will be handling an issue before it gets to their personal workspace.

IT teams, with hyper-automation, AI and machine learning technology to support them, can shift to more strategic initiatives that will enhance business value and begin thinking about the next operational advancement.

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Hyper-Automation: IT's Path to Edge Self-Reliance

Rex McMillan

A distributed, remote workforce is the new business reality. How can businesses keep operations going smoothly and quickly resolve issues when IT staff is in San Jose, employee A is working remotely in Denver at their home and employee B is a salesperson still doing some road traveling? The key is an IT architecture that promotes and supports "self-healing" at the endpoint to take care of issues before they impact employees. The essential element to achieve this is hyper-automation.

According to Gartner, "Hyper-automation refers to the combination of multiple machine learning, packaged software and automation tools to deliver work."

Businesses, notably IT and help desk administrative staff, are fully aware that becoming more self-reliant at the endpoint by integrating hyper-automation is one of the paths to stabilizing business productivity in the new work reality.

Getting to hyper-automation means evolving from basic workflow automation to augmented Artificial Intelligence (AI) and machine learning [conversational bots], then to a confluence of hyper-automation with deep learning capabilities. AI and machine learning, for example, enables self-healing by predicting and proactively fixing an issue at the endpoint before it disrupts performance.

The Autonomous Worker

Hyper-automation benefits all employees, wherever they are working, by supporting a consumer-grade experience at the endpoint. All devices employees use can be detected, diagnosed and auto-remediated for any security or compliance issues, without interrupting the employee's work.

It also is a significant budget lowering and time saving benefit to IT staff faced with managing a more diversified work environment without having to add more employees. Most importantly, it takes an enormous burden off of help desk teams as self-healing solutions can enable endpoints to heal themselves. Given the more flexible hours around-the-clock that remote workers tend to follow, self-healing lets a night owl work trouble-free at midnight, or an early bird finish a sales report at 5 a.m. without an IT hiccup preventing them from shipping the report.

Autonomous working really can only be achieved with moving IT problem resolution via self-healing to the edge. In fact, today hyper-automated platforms can self-heal close to 70% of edge and endpoint device issues — protecting users, securing data and optimizing user experiences without any human intervention.

The Secure, Autonomous Edge

IT and help desk staff need to also ensure data security along with providing self-healing for the autonomous edge. An uptick in remote working, and endpoints put into service that may not have been properly vetted, may have helped contribute to more security headaches: 66% of IT professionals reported an increase in security issues during the spring of 2020.

To maintain tight security, regardless of device or location, hyper-automation can accomplish this with "adaptive security." Using AI and machine learning — continuously sensing, discovering, and detecting security issues — IT can prevent rogue devices, for example, from disrupting the network. Issues can be prioritized based on machine learning enabled, predictive cognition. Self-healing then kicks in, remediating issues proactively before the end user even realizes there was an issue.

The Rationale for Hyper-Automation

AI. Machine learning. Automation. Bots. Is it worth it for IT and help desk teams to embrace more technology solutions in a business environment already crowded with hybrid-cloud computing, BYOD devices, and a host of data applications?

There are many reasons why the answer is yes. Apart from performance enhancement, security benefits and user productivity, there is a quantifiable ROI business value to deploying hyper-automation. When using hyper-automation to discover, manage, secure and service devices across an enterprise, we've seen customers reduce unplanned device outages up to 63%, reduce time to deploy security updates by 88% or even resolve up to 80% of endpoint issues before users report them. Business continuity is the ultimate ROI and hyper-automation directly contributes to an uninterrupted workflow.

The Path to the Autonomous Edge

Integrating hyper-automation into the IT architecture needs to start with looking at the need. What issues consume the most help-desk time?

How many of those could be proactively resolved using AI and machine learning to troubleshoot and fix the problem?

Then IT needs to have a complete picture of all the endpoints under their supervision, along with associated software and peripherals.

With the goal of a satisfying, secure user experience, the next step is to identify the optimal configuration and performance settings. Even more ideal is to personalize the experience for the end-user to make their workspace familiar and productive. Once the optimal settings to keep a device and user workspace secure and productive are identified IT staff can then automate detecting if the device drifts from that optimal state and return it back, keeping the workspace secure and productive.

Hyper-automation, using built-in AI with bots, can also take more sophisticated actions that contribute to ROI. IT can work with finance and operations teams to identify where integrating more AI can improve budget control and performance. Possibilities include assessing asset inventory in real-time, validating security configurations across a broadly dispersed or remote device estate, or even self-heal issues such as configuration drift, performance or compliance issues.

The Self-Reliant Future

Today's hyper-automated platforms, based on our experience, are delivering up to 70% self-healing for edge and endpoint devices. However, that may reach 100% autonomy over the next few years. The autonomous worker, using a device remotely, will no longer rely on a help desk to fix issues but feel confident the hyper-automation tools in place will be handling an issue before it gets to their personal workspace.

IT teams, with hyper-automation, AI and machine learning technology to support them, can shift to more strategic initiatives that will enhance business value and begin thinking about the next operational advancement.

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...