Hyper-Automation: IT's Path to Edge Self-Reliance
October 06, 2020

Rex McMillan
Ivanti

Share this

A distributed, remote workforce is the new business reality. How can businesses keep operations going smoothly and quickly resolve issues when IT staff is in San Jose, employee A is working remotely in Denver at their home and employee B is a salesperson still doing some road traveling? The key is an IT architecture that promotes and supports "self-healing" at the endpoint to take care of issues before they impact employees. The essential element to achieve this is hyper-automation.

According to Gartner, "Hyper-automation refers to the combination of multiple machine learning, packaged software and automation tools to deliver work."

Businesses, notably IT and help desk administrative staff, are fully aware that becoming more self-reliant at the endpoint by integrating hyper-automation is one of the paths to stabilizing business productivity in the new work reality.

Getting to hyper-automation means evolving from basic workflow automation to augmented Artificial Intelligence (AI) and machine learning [conversational bots], then to a confluence of hyper-automation with deep learning capabilities. AI and machine learning, for example, enables self-healing by predicting and proactively fixing an issue at the endpoint before it disrupts performance.

The Autonomous Worker

Hyper-automation benefits all employees, wherever they are working, by supporting a consumer-grade experience at the endpoint. All devices employees use can be detected, diagnosed and auto-remediated for any security or compliance issues, without interrupting the employee's work.

It also is a significant budget lowering and time saving benefit to IT staff faced with managing a more diversified work environment without having to add more employees. Most importantly, it takes an enormous burden off of help desk teams as self-healing solutions can enable endpoints to heal themselves. Given the more flexible hours around-the-clock that remote workers tend to follow, self-healing lets a night owl work trouble-free at midnight, or an early bird finish a sales report at 5 a.m. without an IT hiccup preventing them from shipping the report.

Autonomous working really can only be achieved with moving IT problem resolution via self-healing to the edge. In fact, today hyper-automated platforms can self-heal close to 70% of edge and endpoint device issues — protecting users, securing data and optimizing user experiences without any human intervention.

The Secure, Autonomous Edge

IT and help desk staff need to also ensure data security along with providing self-healing for the autonomous edge. An uptick in remote working, and endpoints put into service that may not have been properly vetted, may have helped contribute to more security headaches: 66% of IT professionals reported an increase in security issues during the spring of 2020.

To maintain tight security, regardless of device or location, hyper-automation can accomplish this with "adaptive security." Using AI and machine learning — continuously sensing, discovering, and detecting security issues — IT can prevent rogue devices, for example, from disrupting the network. Issues can be prioritized based on machine learning enabled, predictive cognition. Self-healing then kicks in, remediating issues proactively before the end user even realizes there was an issue.

The Rationale for Hyper-Automation

AI. Machine learning. Automation. Bots. Is it worth it for IT and help desk teams to embrace more technology solutions in a business environment already crowded with hybrid-cloud computing, BYOD devices, and a host of data applications?

There are many reasons why the answer is yes. Apart from performance enhancement, security benefits and user productivity, there is a quantifiable ROI business value to deploying hyper-automation. When using hyper-automation to discover, manage, secure and service devices across an enterprise, we've seen customers reduce unplanned device outages up to 63%, reduce time to deploy security updates by 88% or even resolve up to 80% of endpoint issues before users report them. Business continuity is the ultimate ROI and hyper-automation directly contributes to an uninterrupted workflow.

The Path to the Autonomous Edge

Integrating hyper-automation into the IT architecture needs to start with looking at the need. What issues consume the most help-desk time?

How many of those could be proactively resolved using AI and machine learning to troubleshoot and fix the problem?

Then IT needs to have a complete picture of all the endpoints under their supervision, along with associated software and peripherals.

With the goal of a satisfying, secure user experience, the next step is to identify the optimal configuration and performance settings. Even more ideal is to personalize the experience for the end-user to make their workspace familiar and productive. Once the optimal settings to keep a device and user workspace secure and productive are identified IT staff can then automate detecting if the device drifts from that optimal state and return it back, keeping the workspace secure and productive.

Hyper-automation, using built-in AI with bots, can also take more sophisticated actions that contribute to ROI. IT can work with finance and operations teams to identify where integrating more AI can improve budget control and performance. Possibilities include assessing asset inventory in real-time, validating security configurations across a broadly dispersed or remote device estate, or even self-heal issues such as configuration drift, performance or compliance issues.

The Self-Reliant Future

Today's hyper-automated platforms, based on our experience, are delivering up to 70% self-healing for edge and endpoint devices. However, that may reach 100% autonomy over the next few years. The autonomous worker, using a device remotely, will no longer rely on a help desk to fix issues but feel confident the hyper-automation tools in place will be handling an issue before it gets to their personal workspace.

IT teams, with hyper-automation, AI and machine learning technology to support them, can shift to more strategic initiatives that will enhance business value and begin thinking about the next operational advancement.

Rex McMillan is Principal Product Manager at Ivanti.
Share this

The Latest

June 29, 2022

When it comes to AIOps predictions, there's no question of AI's value in predictive intelligence and faster problem resolution for IT teams. In fact, Gartner has reported that there is no future for IT Operations without AIOps. So, where is AIOps headed in five years? Here's what the vendors and thought leaders in the AIOps space had to share ...

June 27, 2022

A new study by OpsRamp on the state of the Managed Service Providers (MSP) market concludes that MSPs face a market of bountiful opportunities but must prepare for this growth by embracing complex technologies like hybrid cloud management, root cause analysis and automation ...

June 27, 2022

Hybrid work adoption and the accelerated pace of digital transformation are driving an increasing need for automation and site reliability engineering (SRE) practices, according to new research. In a new survey almost half of respondents (48.2%) said automation is a way to decrease Mean Time to Resolution/Repair (MTTR) and improve service management ...

June 23, 2022

Digital businesses don't invest in monitoring for monitoring's sake. They do it to make the business run better. Every dollar spent on observability — every hour your team spends using monitoring tools or responding to what they reveal — should tie back directly to business outcomes: conversions, revenues, brand equity. If they don't? You might be missing the forest for the trees ...

June 22, 2022

Every day, companies are missing customer experience (CX) "red flags" because they don't have the tools to observe CX processes or metrics. Even basic errors or defects in automated customer interactions are left undetected for days, weeks or months, leading to widespread customer dissatisfaction. In fact, poor CX and digital technology investments are costing enterprises billions of dollars in lost potential revenue ...

June 21, 2022

Organizations are moving to microservices and cloud native architectures at an increasing pace. The primary incentive for these transformation projects is typically to increase the agility and velocity of software release and product innovation. These dynamic systems, however, are far more complex to manage and monitor, and they generate far higher data volumes ...

June 16, 2022

Global IT teams adapted to remote work in 2021, resolving employee tickets 23% faster than the year before as overall resolution time for IT tickets went down by 7 hours, according to the Freshservice Service Management Benchmark Report from Freshworks ...

June 15, 2022

Once upon a time data lived in the data center. Now data lives everywhere. All this signals the need for a new approach to data management, a next-gen solution ...

June 14, 2022

Findings from the 2022 State of Edge Messaging Report from Ably and Coleman Parkes Research show that most organizations (65%) that have built edge messaging capabilities in house have experienced an outage or significant downtime in the last 12-18 months. Most of the current in-house real-time messaging services aren't cutting it ...

June 13, 2022
Today's users want a complete digital experience when dealing with a software product or system. They are not content with the page load speeds or features alone but want the software to perform optimally in an omnichannel environment comprising multiple platforms, browsers, devices, and networks. This calls into question the role of load testing services to check whether the given software under testing can perform optimally when subjected to peak load ...