Move Over Siloed IT Workflows, Intelligent Observability Is the Hub of Context and Collaboration
December 08, 2020

Adam Frank
Moogsoft

Share this

In the era of observability, systems across your organization accumulate vast amounts of data about themselves — too much for IT teams to manage at the pace which containerized and cloud IT changes. And as data sources increase, silos emerge in the form of various telemetry and monitoring tools meant to aggregate that telemetry. These systems don't talk to each other, causing alerts to run amok. For SREs, the mental aerobics of correlating these alerts into insights constitutes toil — tedious, manual work spotting, deciphering and resolving events. Ultimately, this toil eats away at productive ways of working, stealing SREs' valuable time and resources that could be dedicated to building new, innovative services.

But intelligent observability can eliminate this toil by seamlessly integrating data across silos and automating the detection of contextual insights, actionable information and a platform for learning to create a unified view of all data. After all, you need all of this data to understand your customers' experience.


Integration Across IT Data Sources

In current workflows, SREs must examine telemetry from across silos — logs, metrics, traces, individual monitoring tools and more — and manually spot anomalies or system change events in the data. Because they're working off siloed data sources, they then need to de-dupe the same event appearing across different tools and forms of telemetry and correlate those related events into individual incidents. And it doesn't end there. Next, they must determine the cause of those incidents and take action on them, working alongside other teams to resolve the issues.

As you can imagine, doing this across an endless amount of data takes a great deal of time and effort — keeping your backlog full of untouched innovative projects that increase customer value. But, with intelligent observability providing a unified view of all IT data, SRE teams can quickly see correlations and pluck the needle (the root causes of incidents and alerts) from the haystack (non-critical event noise), then move on to the work they want to do.

Activate AI and Automation to Unify Data

So, this all sounds like a dream — but how do we practically unify data at scale? AI allows the automation of collecting, filtering, organizing and analyzing data. This not only reduces event noise so SRE teams can operate more efficiently, but also creates context and actionability from that data.

Integrating with CMDBs, asset management DBs and discovery systems yield bits of information useful in deriving context — like location, department, business criticality, service relationships, owner and more. This context offers situational awareness so that SREs can get a handle on interdependencies and relationships that allow them to resolve big incidents faster — ultimately automating away the toil with AI.

For example, if someone makes a change within system A that triggers an issue in system B, it's generally a very manual and cumbersome process to determine why the issue in system B is taking place. But, with a unified data source and added context from AI, SREs have visibility into how system A influences system B, giving them a complete picture to quickly pinpoint the root cause of the issue.

Clean Up Data for Actionability

Not every event is created equal. Not only does context allow situational awareness for SREs, but it also offers space for deep learning algorithms to assess priorities for event alerts to help decipher what is important and what is not. Noise reduction with an algorithmically-developed entropy threshold separates the wheat from the chaff. Out of previously siloed data and contextual insights, SRE teams will recognize events that need action and take immediate steps to resolve what matters most — like issues directly impacting the end-user experience. On top of that, intelligent observability platforms allow for quick action by including integrations for collaboration between teams to resolve incidents quicker and more effectively.

Leverage a Platform for Learning

Contextualizing and correlating alerts puts SRE teams in action, but they need a platform to manage this process. Processed data placed into a unifying hub becomes a platform to discover the real issues plaguing systems and the ability to preempt the next issue. This means SREs can not only fix problems that are currently bogging down their systems, but avoid similar issues in the future for better system performance.

More efficient IT workflows rely on the ability to defeat data silos. Intelligent observability platforms do this at scale, crossing silos, and using context and actionable information to best direct SRE teams' efforts. Without the toil of juggling data from across various tools and putting meaning to the data, SREs can look forward to delivering innovation, high-impact projects instead of diagnosing and fixing the same issues over and over.

Adam Frank is VP, Product & Design, at Moogsoft
Share this

The Latest

September 23, 2021

The Internet played a greater role than ever in supporting enterprise productivity over the past year-plus, as newly remote workers logged onto the job via residential links that, it turns out, left much to be desired in terms of enabling work ...

September 22, 2021

The world's appetite for cloud services has increased but now, more than 18 months since the beginning of the pandemic, organizations are assessing their cloud spend and trying to better understand the IT investments that were made under pressure. This is a huge challenge in and of itself, with the added complexity of embracing hybrid work ...

September 21, 2021

After a year of unprecedented challenges and change, tech pros responding to this year’s survey, IT Pro Day 2021 survey: Bring IT On from SolarWinds, report a positive perception of their roles and say they look forward to what lies ahead ...

September 20, 2021

One of the key performance indicators for IT Ops is MTTR (Mean-Time-To-Resolution). MTTR essentially measures the length of your incident management lifecycle: from detection; through assignment, triage and investigation; to remediation and resolution. IT Ops teams strive to shorten their incident management lifecycle and lower their MTTR, to meet their SLAs and maintain healthy infrastructures and services. But that's often easier said than done, with incident triage being a key factor in that challenge ...

September 16, 2021

Achieve more with less. How many of you feel that pressure — or, even worse, hear those words — trickle down from leadership? The reality is that overworked and under-resourced IT departments will only lead to chronic errors, missed deadlines and service assurance failures. After all, we're only human. So what are overburdened IT departments to do? Reduce the human factor. In a word: automate ...

September 15, 2021

On average, data innovators release twice as many products and increase employee productivity at double the rate of organizations with less mature data strategies, according to the State of Data Innovation report from Splunk ...

September 14, 2021

While 90% of respondents believe observability is important and strategic to their business — and 94% believe it to be strategic to their role — just 26% noted mature observability practices within their business, according to the 2021 Observability Forecast ...

September 13, 2021

Let's explore a few of the most prominent app success indicators and how app engineers can shift their development strategy to better meet the needs of today's app users ...

September 09, 2021

Business enterprises aiming at digital transformation or IT companies developing new software applications face challenges in developing eye-catching, robust, fast-loading, mobile-friendly, content-rich, and user-friendly software. However, with increased pressure to reduce costs and save time, business enterprises often give a short shrift to performance testing services ...

September 08, 2021

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance. Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too ...