Skip to main content

It's Time to Modernize Pre-Deployment Testing

Jeff Atkins
Spirent

Here's how it happens: You're deploying a new technology, thinking everything's going smoothly, when the alerts start coming in. Your rollout has hit a snag. Whole groups of users are complaining about poor performance on their devices. Some can't access applications at all. You've now blown your service-level agreement (SLA). You might have just introduced a new security vulnerability. In the worst case, your big expensive product launch has missed the mark altogether.

"How did this happen?" you're asking yourself. "Didn't we test everything before we deployed?"

Yes, you did. But you made a critical though common mistake: your tests assumed ideal network conditions. And as you just learned firsthand, the idealized environment in your testing models and the way things work in the real world are two very different things.

Hopefully, this hypothetical doesn't sound too familiar. But if you're relying on traditional testing workflows and you've managed to avoid these kinds of outcomes so far, count your blessings. Because you're taking a big risk with every new launch.

There's a better way to test new enterprise technologies so they get deployed on time, under budget, with the performance you expect. To do it though, you need to get better at predicting the future. That starts with painting a more accurate picture of the present.

Navigating Complexity

Modern IT organizations already deal with more devices, more connections, and complexity than ever before. But even if you get a handle on today's technology landscape, new innovations emerge all the time. Next-generation Ethernet technologies, 5G networks, SD-WAN, Wi-Fi 6, and others can all bring important benefits to your users — benefits your competitors may already be realizing, that you can't afford to ignore. Yet, each new deployment carries significant unpredictability and risk.

All of this means it's more critical than ever to thoroughly test and validate new technology before you deploy. But all the testing in the world can't help you if you're not testing the right things. And the fact is, next-generation enterprise technologies are evolving too quickly for legacy testing approaches to keep up.

In too many cases, enterprises still test new applications and infrastructure by connecting devices directly to datacenters or clouds, with little or no traffic on the network. That kind of testing can tell you how the technology works under ideal conditions, but how often can you expect ideal conditions in the real world?

How will the technology perform on a congested or impaired network?

What kinds of problems will have the biggest impact on user experience?

Too often, those questions get answered only after deployment, when users complain. At which point customer satisfaction has already taken a hit, you may have missed an SLA, and you're looking at a time-consuming, expensive repair process.

Even more concerning, security often gets less attention than performance in pre-deployment validation. Many enterprises still rely on basic tools and firmware checks, or even just assurances from vendors, that software is safe to deploy. Which means there's a good chance you'll only learn about a vulnerability after it's been exploited, and your systems are already compromised.

A Smarter Approach

Fortunately, it's possible to predict and avoid most of these issues. To do it though, we need to recognize that testing models that worked a decade ago won't cut it anymore. We need to reimagine pre-deployment testing for today's more complex, dynamic, and distributed world.

Whatever your updated testing methodology looks like, it should include the following core practices:

Performance validation: Your vendors aren't lying when they claim to hit certain benchmarks, but you can't assume you'll achieve comparable performance in your own environment—especially if you'll be operating under an SLA. You should be measuring everything from voice quality to packet jitter. By validating real-world performance across more granular metrics, you can better evaluate any new solutions you're considering. At the same time, you identify everything you'll need to understand the user experience and troubleshoot problems post-deployment.

Network emulation: If you're going to deploy with confidence, you want to get your test beds as close as possible to real-world conditions. That includes mimicking networks, devices, and users under heavy traffic loads.

Network impairment: Network faults and service degradations are an unavoidable (if hopefully infrequent) reality. So, wouldn't you prefer to know how a new technology will respond under those conditions ahead of time? By running controlled network impairment scenarios alongside emulation, you'll know exactly how problems will affect your users, so you can better prepare. Even more important, you can set realistic expectations with customers and achievable SLAs.

Security assessments: Don't bet your security on third-party assurances or basic firmware checks. Take the time to thoroughly test for vulnerabilities, simulate known attacks, and evaluate weaknesses in the end-to-end network.

Testbed automation: To keep pace with rapidly changing networks and clouds, you should look to automate as much of the testing process as possible. The less you rely on slow, manual testing methodologies, the more quickly and cost-effectively you'll be able to simulate new scenarios as your environment evolves.

Proactive Testing Makes All the Difference

So, what happens when you put these principles into practice — when you modernize your testing to reflect a more realistic picture of your technology landscape?

First, you save time and money by identifying problems before deploying instead of after. It's a lot harder and more expensive to fix issues with a new technology when diverse users and systems already rely on it, and SLAs are already violated.

Second, you protect your users and your business by detecting and mitigating security vulnerabilities before malicious actors can exploit them. Finally, you improve your organization's ability to take advantage of new technology. By automating the testing process, you can continually bring in new testing practices and collect more valuable insights without slowing down innovation.

By overhauling your testing strategy based on realism and automation, you can put your organization in the best position to capitalize on new technologies when they emerge. You can reduce the risk of disruptive (and expensive) problems cropping up out of the blue. And, you can make ongoing innovation a core strength of your IT organization — and a key competitive advantage for your business.

Jeff Atkins is Director of Solutions Marketing at Spirent

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

It's Time to Modernize Pre-Deployment Testing

Jeff Atkins
Spirent

Here's how it happens: You're deploying a new technology, thinking everything's going smoothly, when the alerts start coming in. Your rollout has hit a snag. Whole groups of users are complaining about poor performance on their devices. Some can't access applications at all. You've now blown your service-level agreement (SLA). You might have just introduced a new security vulnerability. In the worst case, your big expensive product launch has missed the mark altogether.

"How did this happen?" you're asking yourself. "Didn't we test everything before we deployed?"

Yes, you did. But you made a critical though common mistake: your tests assumed ideal network conditions. And as you just learned firsthand, the idealized environment in your testing models and the way things work in the real world are two very different things.

Hopefully, this hypothetical doesn't sound too familiar. But if you're relying on traditional testing workflows and you've managed to avoid these kinds of outcomes so far, count your blessings. Because you're taking a big risk with every new launch.

There's a better way to test new enterprise technologies so they get deployed on time, under budget, with the performance you expect. To do it though, you need to get better at predicting the future. That starts with painting a more accurate picture of the present.

Navigating Complexity

Modern IT organizations already deal with more devices, more connections, and complexity than ever before. But even if you get a handle on today's technology landscape, new innovations emerge all the time. Next-generation Ethernet technologies, 5G networks, SD-WAN, Wi-Fi 6, and others can all bring important benefits to your users — benefits your competitors may already be realizing, that you can't afford to ignore. Yet, each new deployment carries significant unpredictability and risk.

All of this means it's more critical than ever to thoroughly test and validate new technology before you deploy. But all the testing in the world can't help you if you're not testing the right things. And the fact is, next-generation enterprise technologies are evolving too quickly for legacy testing approaches to keep up.

In too many cases, enterprises still test new applications and infrastructure by connecting devices directly to datacenters or clouds, with little or no traffic on the network. That kind of testing can tell you how the technology works under ideal conditions, but how often can you expect ideal conditions in the real world?

How will the technology perform on a congested or impaired network?

What kinds of problems will have the biggest impact on user experience?

Too often, those questions get answered only after deployment, when users complain. At which point customer satisfaction has already taken a hit, you may have missed an SLA, and you're looking at a time-consuming, expensive repair process.

Even more concerning, security often gets less attention than performance in pre-deployment validation. Many enterprises still rely on basic tools and firmware checks, or even just assurances from vendors, that software is safe to deploy. Which means there's a good chance you'll only learn about a vulnerability after it's been exploited, and your systems are already compromised.

A Smarter Approach

Fortunately, it's possible to predict and avoid most of these issues. To do it though, we need to recognize that testing models that worked a decade ago won't cut it anymore. We need to reimagine pre-deployment testing for today's more complex, dynamic, and distributed world.

Whatever your updated testing methodology looks like, it should include the following core practices:

Performance validation: Your vendors aren't lying when they claim to hit certain benchmarks, but you can't assume you'll achieve comparable performance in your own environment—especially if you'll be operating under an SLA. You should be measuring everything from voice quality to packet jitter. By validating real-world performance across more granular metrics, you can better evaluate any new solutions you're considering. At the same time, you identify everything you'll need to understand the user experience and troubleshoot problems post-deployment.

Network emulation: If you're going to deploy with confidence, you want to get your test beds as close as possible to real-world conditions. That includes mimicking networks, devices, and users under heavy traffic loads.

Network impairment: Network faults and service degradations are an unavoidable (if hopefully infrequent) reality. So, wouldn't you prefer to know how a new technology will respond under those conditions ahead of time? By running controlled network impairment scenarios alongside emulation, you'll know exactly how problems will affect your users, so you can better prepare. Even more important, you can set realistic expectations with customers and achievable SLAs.

Security assessments: Don't bet your security on third-party assurances or basic firmware checks. Take the time to thoroughly test for vulnerabilities, simulate known attacks, and evaluate weaknesses in the end-to-end network.

Testbed automation: To keep pace with rapidly changing networks and clouds, you should look to automate as much of the testing process as possible. The less you rely on slow, manual testing methodologies, the more quickly and cost-effectively you'll be able to simulate new scenarios as your environment evolves.

Proactive Testing Makes All the Difference

So, what happens when you put these principles into practice — when you modernize your testing to reflect a more realistic picture of your technology landscape?

First, you save time and money by identifying problems before deploying instead of after. It's a lot harder and more expensive to fix issues with a new technology when diverse users and systems already rely on it, and SLAs are already violated.

Second, you protect your users and your business by detecting and mitigating security vulnerabilities before malicious actors can exploit them. Finally, you improve your organization's ability to take advantage of new technology. By automating the testing process, you can continually bring in new testing practices and collect more valuable insights without slowing down innovation.

By overhauling your testing strategy based on realism and automation, you can put your organization in the best position to capitalize on new technologies when they emerge. You can reduce the risk of disruptive (and expensive) problems cropping up out of the blue. And, you can make ongoing innovation a core strength of your IT organization — and a key competitive advantage for your business.

Jeff Atkins is Director of Solutions Marketing at Spirent

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...