Losing $$ Due to Ticket Times? Hack Response Time Using Data
June 03, 2016

Collin Firenze
Optanix

Share this

Without the proper expertise and tools in place to quickly isolate, diagnose, and resolve an incident, a quick routine error can result in hours of downtime – causing significant interruption in business operations that can impact both business revenue and employee productivity. How can we stop these little instances from turning into major fallouts? Major companies and organizations, take heed:

1. Identify the correlation between issues to expedite time to notify and time to resolve

Not understanding the correlation between issues is detrimental to timely resolutions. With a network monitoring solution in place, lack of automated correlation can generate excess "noise." This then requires support teams to act on numerous individualized alerts, rather than a single ticket that has all relevant events and information for the support end-user.

The correlated monitoring approach provides a holistic view into the network failure for support teams. Enabling support teams to analyze the network failure by utilizing the correlated events to efficiently identify the root cause will provide them the opportunity to promptly execute the corrective action to resolve the issue at hand.

Correlation consolidates all relevant information into a single ticket allowing support teams to largely reduce their staffing models, with only one support engineer needed to act on the incident as opposed to numerous resources engaging on individualized alerts.

2. Constantly analyzing raw data for trends helps IT teams proactively spot and prevent recurring issues

Aside from the standard reactive response of a support team, there is substantial benefit in the proactive analysis of raw data from your environment. By being proactive, trends and failures can be identified, followed by corrective and preventative actions taken to ensure support teams are not spending time investigating repeat issues. This approach not only creates a more stable environment with fewer failures, but also allows support teams to reduce manual hours and cost by avoiding "wasted" investigation on known and reoccurring issues.

Within a support organization, a Problem Management Group (PMG) is often implemented to fulfill the role of proactive analysis on raw data. In such instances, a PMG will create various scripts and calculation that will turn the raw data into a meaningful representation of the data set, to identify areas of concern such as:

■ Common types of failures

■ Failures within a specific region or location

■ Issues with a specific end-device type or model

■ Reoccurring issues at a specific time/day

■ Any trends in software or firmware revisions.

Once the raw data is analyzed by the PMG, the results can be relayed to the support team for review so a plan can be formalized to take the appropriate preventative action. The support team will work to present the data and their proposed solution, and seek approval to execute the corrective/preventative steps.

3. Present data in interactive dashboards and business intelligence reports to ensure proper understanding

Not every support team has the benefit of a PMG. In this specific circumstance, it's important that the system monitoring tools are fulfilling the role of the PMG analysis, and presenting the data in an easy-to-understand format for the end-user. From a tools perspective, the data analysis can be approached from both an interactive dashboard perspective, as well as through the use of business intelligence reports.

Interactive dashboards are a great way of presenting data in a format that caters to all audiences, from administrative and management level, and technical engineers. A combination of both graphs (i.e. pie charts, line graphs, etc.) and summarized metrics (i.e. Today, This Week, Last 30 days, etc.) are utilized to display the analyzed data, with the ability to filter capabilities to allow the end-user to view only desired information without the interference of all analyzed data which may not be applicable to their investigation.

In fact, a more "customizable" approach to raw data analysis would be a Business Intelligence Reporting Solution (BIRS). Essentially, the BIRS collects the raw data for the end-user, and provides drag and drop reporting, so that any desired data elements of interest can be incorporated into a customized on-demand report. What is particularly helpful for the user is the easy ability to save "filtering criteria" that would be beneficial to utilize repeatedly (i.e. Monthly Business Review Reports).

With routine errors, the main goal is to stay ahead of them by using data to identify correlations. Through effective event correlation, and by empowering teams with raw data, you can ensure that issues are quickly mitigated and don't pose the risk of impacting company ROI and system availability.

Collin Firenze is Associate Director at Optanix.

Share this

The Latest

September 23, 2021

The Internet played a greater role than ever in supporting enterprise productivity over the past year-plus, as newly remote workers logged onto the job via residential links that, it turns out, left much to be desired in terms of enabling work ...

September 22, 2021

The world's appetite for cloud services has increased but now, more than 18 months since the beginning of the pandemic, organizations are assessing their cloud spend and trying to better understand the IT investments that were made under pressure. This is a huge challenge in and of itself, with the added complexity of embracing hybrid work ...

September 21, 2021

After a year of unprecedented challenges and change, tech pros responding to this year’s survey, IT Pro Day 2021 survey: Bring IT On from SolarWinds, report a positive perception of their roles and say they look forward to what lies ahead ...

September 20, 2021

One of the key performance indicators for IT Ops is MTTR (Mean-Time-To-Resolution). MTTR essentially measures the length of your incident management lifecycle: from detection; through assignment, triage and investigation; to remediation and resolution. IT Ops teams strive to shorten their incident management lifecycle and lower their MTTR, to meet their SLAs and maintain healthy infrastructures and services. But that's often easier said than done, with incident triage being a key factor in that challenge ...

September 16, 2021

Achieve more with less. How many of you feel that pressure — or, even worse, hear those words — trickle down from leadership? The reality is that overworked and under-resourced IT departments will only lead to chronic errors, missed deadlines and service assurance failures. After all, we're only human. So what are overburdened IT departments to do? Reduce the human factor. In a word: automate ...

September 15, 2021

On average, data innovators release twice as many products and increase employee productivity at double the rate of organizations with less mature data strategies, according to the State of Data Innovation report from Splunk ...

September 14, 2021

While 90% of respondents believe observability is important and strategic to their business — and 94% believe it to be strategic to their role — just 26% noted mature observability practices within their business, according to the 2021 Observability Forecast ...

September 13, 2021

Let's explore a few of the most prominent app success indicators and how app engineers can shift their development strategy to better meet the needs of today's app users ...

September 09, 2021

Business enterprises aiming at digital transformation or IT companies developing new software applications face challenges in developing eye-catching, robust, fast-loading, mobile-friendly, content-rich, and user-friendly software. However, with increased pressure to reduce costs and save time, business enterprises often give a short shrift to performance testing services ...

September 08, 2021

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance. Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too ...