Losing $$ Due to Ticket Times? Hack Response Time Using Data
June 03, 2016

Collin Firenze
Optanix

Share this

Without the proper expertise and tools in place to quickly isolate, diagnose, and resolve an incident, a quick routine error can result in hours of downtime – causing significant interruption in business operations that can impact both business revenue and employee productivity. How can we stop these little instances from turning into major fallouts? Major companies and organizations, take heed:

1. Identify the correlation between issues to expedite time to notify and time to resolve

Not understanding the correlation between issues is detrimental to timely resolutions. With a network monitoring solution in place, lack of automated correlation can generate excess "noise." This then requires support teams to act on numerous individualized alerts, rather than a single ticket that has all relevant events and information for the support end-user.

The correlated monitoring approach provides a holistic view into the network failure for support teams. Enabling support teams to analyze the network failure by utilizing the correlated events to efficiently identify the root cause will provide them the opportunity to promptly execute the corrective action to resolve the issue at hand.

Correlation consolidates all relevant information into a single ticket allowing support teams to largely reduce their staffing models, with only one support engineer needed to act on the incident as opposed to numerous resources engaging on individualized alerts.

2. Constantly analyzing raw data for trends helps IT teams proactively spot and prevent recurring issues

Aside from the standard reactive response of a support team, there is substantial benefit in the proactive analysis of raw data from your environment. By being proactive, trends and failures can be identified, followed by corrective and preventative actions taken to ensure support teams are not spending time investigating repeat issues. This approach not only creates a more stable environment with fewer failures, but also allows support teams to reduce manual hours and cost by avoiding "wasted" investigation on known and reoccurring issues.

Within a support organization, a Problem Management Group (PMG) is often implemented to fulfill the role of proactive analysis on raw data. In such instances, a PMG will create various scripts and calculation that will turn the raw data into a meaningful representation of the data set, to identify areas of concern such as:

■ Common types of failures

■ Failures within a specific region or location

■ Issues with a specific end-device type or model

■ Reoccurring issues at a specific time/day

■ Any trends in software or firmware revisions.

Once the raw data is analyzed by the PMG, the results can be relayed to the support team for review so a plan can be formalized to take the appropriate preventative action. The support team will work to present the data and their proposed solution, and seek approval to execute the corrective/preventative steps.

3. Present data in interactive dashboards and business intelligence reports to ensure proper understanding

Not every support team has the benefit of a PMG. In this specific circumstance, it's important that the system monitoring tools are fulfilling the role of the PMG analysis, and presenting the data in an easy-to-understand format for the end-user. From a tools perspective, the data analysis can be approached from both an interactive dashboard perspective, as well as through the use of business intelligence reports.

Interactive dashboards are a great way of presenting data in a format that caters to all audiences, from administrative and management level, and technical engineers. A combination of both graphs (i.e. pie charts, line graphs, etc.) and summarized metrics (i.e. Today, This Week, Last 30 days, etc.) are utilized to display the analyzed data, with the ability to filter capabilities to allow the end-user to view only desired information without the interference of all analyzed data which may not be applicable to their investigation.

In fact, a more "customizable" approach to raw data analysis would be a Business Intelligence Reporting Solution (BIRS). Essentially, the BIRS collects the raw data for the end-user, and provides drag and drop reporting, so that any desired data elements of interest can be incorporated into a customized on-demand report. What is particularly helpful for the user is the easy ability to save "filtering criteria" that would be beneficial to utilize repeatedly (i.e. Monthly Business Review Reports).

With routine errors, the main goal is to stay ahead of them by using data to identify correlations. Through effective event correlation, and by empowering teams with raw data, you can ensure that issues are quickly mitigated and don't pose the risk of impacting company ROI and system availability.

Collin Firenze is Associate Director at Optanix.

Share this

The Latest

November 15, 2018

We all know artificial intelligence (AI) is a hot topic — but beyond the buzzword, have you ever wondered how IT departments are actually adopting AI technologies to improve on their operations? ...

November 14, 2018

How can IT teams focus on the critical events that can impact their business instead of wading through false positives? The emerging discipline of AIOps is a much-needed panacea for detecting patterns, identifying anomalies, and making sense of alerts across hybrid infrastructure ...

November 09, 2018

In a recent webinar AIOps and IT Analytics at the Crossroads, I was asked several times about the borderline between AIOps and monitoring tools — most particularly application performance monitoring (APM) capabilities. The general direction of the questions was — how are they different? Do you need AIOps if you have APM already? Why should I invest in both? ...

November 08, 2018

There's no place like the web and smartphones for the holidays. With the biggest shopping season of the year quickly approaching, retailers are gearing up to experience the most traffic their online platforms (web, mobile, IoT) have ever seen. To avoid missing out on millions this holiday season, below are the top five ways developers can keep their apps and websites up and running without a hitch ...

November 07, 2018

Usage data is multifaceted, with many diverse benefits. Harvesting usage-driven insights effectively requires both good foundational technology and a nimbleness of mind to unify insights across IT's many silos of domains and disciplines. Because of this, leveraging usage-driven insights can in itself become a catalyst for helping IT as a whole transform toward improved efficiencies and enhanced levels of business alignment ...

November 06, 2018

The requirements to maintain the complete availability and superior performance of your mission-critical workloads is a dynamic process that has never been more challenging. Here are five ways IT teams can measure and guarantee performance-based SLAs in order to increase the value of the infrastructure to the business, and ensure optimal digital performance levels ...

November 05, 2018

APMdigest asked experts from across the IT industry for their opinions on what IT departments should be monitoring to ensure digital performance. Part 5, the final installment, offers some recommendations you may not have thought about ...

November 02, 2018

APMdigest asked experts from across the IT industry for their opinions on what IT departments should be monitoring to ensure digital performance. Part 4 covers the infrastructure, including the cloud and the network ...

November 01, 2018

APMdigest asked experts from across the IT industry for their opinions on what IT departments should be monitoring to ensure digital performance. Part 3 covers the development side ...

October 30, 2018

APMdigest asked experts from across the IT industry for their opinions on what IT departments should be monitoring to ensure digital performance. Part 2 covers key performance metrics like availability and response time ...