A colleague of mine recently embarked on a journey to explore the capabilities of a well-known legacy observability platform within his Kubernetes environment. He dedicated a week to familiarize himself with the platform, primarily testing out the different features for traces, logs, and infrastructure monitoring. However, his focus shifted when a critical feature needed an early release, diverting his attention away from the observability tool. Unfortunately, without any prior notification or warning, there was no rate limitation to the platform logs collection mechanism. One line of YAML configuration file meant all logs were collected, ingested and stored — with no mention of the projected cost.
Fast forward to the following week, a member of the billing department barged into his office, demanding an explanation for an astronomical observability bill totaling $33,000 for a single month, a staggering contrast to the anticipated $1,700.
This series of events left my work buddy struggling with the size of his mistake, and me questioning whether it really was entirely his fault.
The Complex Landscape of Observability Pricing
Navigating observability pricing models can be compared to solving a perplexing puzzle which includes financial variables and contractual intricacies. Predicting all potential costs in advance becomes an elusive endeavor, exemplified by a recent eye-popping $65 million observability bill.
Avoiding miscalculations as the one that happened to my friend requires continuous monitoring of the monitoring solution. This practice slows down day-to-day operations and long-term growth efforts.
The Challenge of Affordability in Observability
The escalating costs associated with observability represent a vast challenge which is confronting many organizations currently. Particularly in the age of cloud computing, IT leaders and even top executives have come to realize the imperative of reining in their infrastructure budgets, which often spiral out of control.
The proliferation of microservices and distributed architectures has ushered in a flood of data that demands observability. Traditionally, more data translates into higher expenses, accompanied by substantial resource consumption, leading not only to increased costs but also inefficiencies.
Regrettably, most observability tools employ pricing models that defy prediction. While applications generate large amounts of log data, instead of an advantage, this abundance has become a cause for concern. In response, best practices now advocate monitoring "only what you need" or limiting the retention period for collected data to a minimum. This raises two questions: how can you know in advance what you will need, and will limiting the retention period to a minimum make it impossible to correlate with out-of-range historical data.
Enter eBPF: A Game-Changer
eBPF (extended Berkeley Packet Filter) has recently emerged as a revolutionary technology that has significantly impacted the Linux kernell. eBPF operates at specific hook points within the kernel, extracting data with minimal overhead, safeguarding the application's resources from excessive consumption. It observes every packet entering or exiting the host, mapping them to processes or containers running on the host, thereby offering granular insights into network traffic.
Moreover, eBPF-powered agents operate independently of the primary application being monitored, ensuring minimal impact on microservice resources.
The combination of visibility depth and stability has made eBPF a groundbreaking technology for cybersecurity companies, and is predicted to have the same effect on observability, for exactly the same reasons.
Hassle-Free Observability
Observability should empower engineers, not bury them in a load of unexpected overheads, data volume surges, and huge subscription bills. The goal of observability platforms should be to guarantee complete protection against such surprises, offering immunity against sudden spikes in data volume and shielding engineers from unfortunate encounters with the billing department.
In conclusion, the journey to achieving efficient and cost-effective observability is full of challenges, but with the right tools and strategies, IT and DevOps leaders can help their organizations emerge from financial uncertainty and empower their engineers to become true observability heroes.
The Latest
The demand for real-time AI capabilities is pushing data scientists to develop and manage infrastructure that can handle massive volumes of data in motion. This includes streaming data pipelines, edge computing, scalable cloud architecture, and data quality and governance. These new responsibilities require data scientists to expand their skill sets significantly ...
As the digital landscape constantly evolves, it's critical for businesses to stay ahead, especially when it comes to operating systems updates. A recent ControlUp study revealed that 82% of enterprise Windows endpoint devices have yet to migrate to Windows 11. With Microsoft's cutoff date on October 14, 2025, for Windows 10 support fast approaching, the urgency cannot be overstated ...
In Part 1 of this two-part series, I defined multi-CDN and explored how and why this approach is used by streaming services, e-commerce platforms, gaming companies and global enterprises for fast and reliable content delivery ... Now, in Part 2 of the series, I'll explore one of the biggest challenges of multi-CDN: observability.
CDNs consist of geographically distributed data centers with servers that cache and serve content close to end users to reduce latency and improve load times. Each data center is strategically placed so that digital signals can rapidly travel from one "point of presence" to the next, getting the digital signal to the viewer as fast as possible ... Multi-CDN refers to the strategy of utilizing multiple CDNs to deliver digital content across the internet ...
We surveyed IT professionals on their attitudes and practices regarding using Generative AI with databases. We asked how they are layering the technology in with their systems, where it's working the best for them, and what their concerns are ...
40% of generative AI (GenAI) solutions will be multimodal (text, image, audio and video) by 2027, up from 1% in 2023, according to Gartner ...
Today's digital business landscape evolves rapidly ... Among the areas primed for innovation, the long-standing ticket-based IT support model stands out as particularly outdated. Emerging as a game-changer, the concept of the "ticketless enterprise" promises to shift IT management from a reactive stance to a proactive approach ...
In MEAN TIME TO INSIGHT Episode 10, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Generative AI ...
By 2026, 30% of enterprises will automate more than half of their network activities, an increase from under 10% in mid-2023, according to Gartner ...