Skip to main content

Network Observability vs. DevOps Observability

Shamus McGillicuddy

If you work in an IT organization, you've likely heard the term "observability" lately. If you're a DevOps pro, you probably know exactly what vendors are talking about when they use the term. If you're a NetOps pro, you might be scratching your head.

DevOps Knows Observability

The DevOps community is very familiar with the observability concept. It refers to the ability to understand the internal state of a system by measuring its external outputs. In DevOps, the system is the application, and the outputs are metrics, logs, and traces. DevOps pros know how to navigate messaging from application performance management and cloud monitoring vendors to find solutions that can deliver the observability they need.

More recently, network monitoring vendors have started talking about network observability. Here is where things get fuzzy. In my opinion, DevOps observability and network observability are not interchangeable. Why would they be?

DevOps teams want to understand the state of applications and the infrastructure on which they reside. NetOps teams need to understand a much larger universe of networks, from the cloud to the user edge.

Both DevOps observability and network observability refer to the need to understand the internal state of a system, but that need to understand is only a problem statement. The solution to that problem is where the differences occur.

Does Anyone Have Network Observability?

First, most NetOps teams care about application performance. They want to collect data from the application environment if they can, such as hypervisors and containers. But they don't stop there. They need to monitor data center networks, wide-area networks (WANs), and campus and branch networks. More recently, they've had to worry about home office networks.

Each network they monitor has become more complex. The data center network has been virtualized and partially extended into the public cloud. The WAN has hybridized, with a mix of managed WAN connectivity, public internet, and 4G/5G. Office networks are a mix of ethernet and Wi-Fi, connected via home internet.

A network observability system must monitor and analyze an extremely diverse and ever-growing data set to understand end-to-end network state. A NetOps team might use five, ten, or even fifty tools to monitor a network by collecting packets, flows, device logs, device metrics, test data, DNS logs, routing table changes, configuration changes, synthetic traffic, and more.

It's a lot to keep track of, and it's hard to find a single tool that can handle it all. In fact, my new research on the concept of network observability found that 83% of IT organizations are interested in streaming data from their network observability tool(s) to a central data lake. Why? Nearly half of them believe a data lake will help them correlate network data across their tools.

Earlier, I wrote that network observability is a bit "fuzzy." I'd argue that it's fuzzy because the problem of network observability is much bigger and more complex than DevOps observability. It may prove impossible for any single tool to solve this problem. That's perfectly okay. But IT organizations must keep this in mind and take a comprehensive approach to network operations tools as they steer toward the promise of network observability.

To learn more about network observability, check out EMA's November 9 webinar, which will highlight market research findings on the topic.

The Latest

The prevention of data center outages continues to be a strategic priority for data center owners and operators. Infrastructure equipment has improved, but the complexity of modern architectures and evolving external threats presents new risks that operators must actively manage, according to the Data Center Outage Analysis 2025 from Uptime Institute ...

As observability engineers, we navigate a sea of telemetry daily. We instrument our applications, configure collectors, and build dashboards, all in pursuit of understanding our complex distributed systems. Yet, amidst this flood of data, a critical question often remains unspoken, or at best, answered by gut feeling: "Is our telemetry actually good?" ... We're inviting you to participate in shaping a foundational element for better observability: the Instrumentation Score ...

We're inching ever closer toward a long-held goal: technology infrastructure that is so automated that it can protect itself. But as IT leaders aggressively employ automation across our enterprises, we need to continuously reassess what AI is ready to manage autonomously and what can not yet be trusted to algorithms ...

Much like a traditional factory turns raw materials into finished products, the AI factory turns vast datasets into actionable business outcomes through advanced models, inferences, and automation. From the earliest data inputs to the final token output, this process must be reliable, repeatable, and scalable. That requires industrializing the way AI is developed, deployed, and managed ...

Almost half (48%) of employees admit they resent their jobs but stay anyway, according to research from Ivanti ... This has obvious consequences across the business, but we're overlooking the massive impact of resenteeism and presenteeism on IT. For IT professionals tasked with managing the backbone of modern business operations, these numbers spell big trouble ...

For many B2B and B2C enterprise brands, technology isn't a core strength. Relying on overly complex architectures (like those that follow a pure MACH doctrine) has been flagged by industry leaders as a source of operational slowdown, creating bottlenecks that limit agility in volatile market conditions ...

FinOps champions crucial cross-departmental collaboration, uniting business, finance, technology and engineering leaders to demystify cloud expenses. Yet, too often, critical cost issues are softened into mere "recommendations" or "insights" — easy to ignore. But what if we adopted security's battle-tested strategy and reframed these as the urgent risks they truly are, demanding immediate action? ...

Two in three IT professionals now cite growing complexity as their top challenge — an urgent signal that the modernization curve may be getting too steep, according to the Rising to the Challenge survey from Checkmk ...

While IT leaders are becoming more comfortable and adept at balancing workloads across on-premises, colocation data centers and the public cloud, there's a key component missing: connectivity, according to the 2025 State of the Data Center Report from CoreSite ...

A perfect storm is brewing in cybersecurity — certificate lifespans shrinking to just 47 days while quantum computing threatens today's encryption. Organizations must embrace ephemeral trust and crypto-agility to survive this dual challenge ...

Network Observability vs. DevOps Observability

Shamus McGillicuddy

If you work in an IT organization, you've likely heard the term "observability" lately. If you're a DevOps pro, you probably know exactly what vendors are talking about when they use the term. If you're a NetOps pro, you might be scratching your head.

DevOps Knows Observability

The DevOps community is very familiar with the observability concept. It refers to the ability to understand the internal state of a system by measuring its external outputs. In DevOps, the system is the application, and the outputs are metrics, logs, and traces. DevOps pros know how to navigate messaging from application performance management and cloud monitoring vendors to find solutions that can deliver the observability they need.

More recently, network monitoring vendors have started talking about network observability. Here is where things get fuzzy. In my opinion, DevOps observability and network observability are not interchangeable. Why would they be?

DevOps teams want to understand the state of applications and the infrastructure on which they reside. NetOps teams need to understand a much larger universe of networks, from the cloud to the user edge.

Both DevOps observability and network observability refer to the need to understand the internal state of a system, but that need to understand is only a problem statement. The solution to that problem is where the differences occur.

Does Anyone Have Network Observability?

First, most NetOps teams care about application performance. They want to collect data from the application environment if they can, such as hypervisors and containers. But they don't stop there. They need to monitor data center networks, wide-area networks (WANs), and campus and branch networks. More recently, they've had to worry about home office networks.

Each network they monitor has become more complex. The data center network has been virtualized and partially extended into the public cloud. The WAN has hybridized, with a mix of managed WAN connectivity, public internet, and 4G/5G. Office networks are a mix of ethernet and Wi-Fi, connected via home internet.

A network observability system must monitor and analyze an extremely diverse and ever-growing data set to understand end-to-end network state. A NetOps team might use five, ten, or even fifty tools to monitor a network by collecting packets, flows, device logs, device metrics, test data, DNS logs, routing table changes, configuration changes, synthetic traffic, and more.

It's a lot to keep track of, and it's hard to find a single tool that can handle it all. In fact, my new research on the concept of network observability found that 83% of IT organizations are interested in streaming data from their network observability tool(s) to a central data lake. Why? Nearly half of them believe a data lake will help them correlate network data across their tools.

Earlier, I wrote that network observability is a bit "fuzzy." I'd argue that it's fuzzy because the problem of network observability is much bigger and more complex than DevOps observability. It may prove impossible for any single tool to solve this problem. That's perfectly okay. But IT organizations must keep this in mind and take a comprehensive approach to network operations tools as they steer toward the promise of network observability.

To learn more about network observability, check out EMA's November 9 webinar, which will highlight market research findings on the topic.

The Latest

The prevention of data center outages continues to be a strategic priority for data center owners and operators. Infrastructure equipment has improved, but the complexity of modern architectures and evolving external threats presents new risks that operators must actively manage, according to the Data Center Outage Analysis 2025 from Uptime Institute ...

As observability engineers, we navigate a sea of telemetry daily. We instrument our applications, configure collectors, and build dashboards, all in pursuit of understanding our complex distributed systems. Yet, amidst this flood of data, a critical question often remains unspoken, or at best, answered by gut feeling: "Is our telemetry actually good?" ... We're inviting you to participate in shaping a foundational element for better observability: the Instrumentation Score ...

We're inching ever closer toward a long-held goal: technology infrastructure that is so automated that it can protect itself. But as IT leaders aggressively employ automation across our enterprises, we need to continuously reassess what AI is ready to manage autonomously and what can not yet be trusted to algorithms ...

Much like a traditional factory turns raw materials into finished products, the AI factory turns vast datasets into actionable business outcomes through advanced models, inferences, and automation. From the earliest data inputs to the final token output, this process must be reliable, repeatable, and scalable. That requires industrializing the way AI is developed, deployed, and managed ...

Almost half (48%) of employees admit they resent their jobs but stay anyway, according to research from Ivanti ... This has obvious consequences across the business, but we're overlooking the massive impact of resenteeism and presenteeism on IT. For IT professionals tasked with managing the backbone of modern business operations, these numbers spell big trouble ...

For many B2B and B2C enterprise brands, technology isn't a core strength. Relying on overly complex architectures (like those that follow a pure MACH doctrine) has been flagged by industry leaders as a source of operational slowdown, creating bottlenecks that limit agility in volatile market conditions ...

FinOps champions crucial cross-departmental collaboration, uniting business, finance, technology and engineering leaders to demystify cloud expenses. Yet, too often, critical cost issues are softened into mere "recommendations" or "insights" — easy to ignore. But what if we adopted security's battle-tested strategy and reframed these as the urgent risks they truly are, demanding immediate action? ...

Two in three IT professionals now cite growing complexity as their top challenge — an urgent signal that the modernization curve may be getting too steep, according to the Rising to the Challenge survey from Checkmk ...

While IT leaders are becoming more comfortable and adept at balancing workloads across on-premises, colocation data centers and the public cloud, there's a key component missing: connectivity, according to the 2025 State of the Data Center Report from CoreSite ...

A perfect storm is brewing in cybersecurity — certificate lifespans shrinking to just 47 days while quantum computing threatens today's encryption. Organizations must embrace ephemeral trust and crypto-agility to survive this dual challenge ...