If you work in an IT organization, you've likely heard the term "observability" lately. If you're a DevOps pro, you probably know exactly what vendors are talking about when they use the term. If you're a NetOps pro, you might be scratching your head.
DevOps Knows Observability
The DevOps community is very familiar with the observability concept. It refers to the ability to understand the internal state of a system by measuring its external outputs. In DevOps, the system is the application, and the outputs are metrics, logs, and traces. DevOps pros know how to navigate messaging from application performance management and cloud monitoring vendors to find solutions that can deliver the observability they need.
More recently, network monitoring vendors have started talking about network observability. Here is where things get fuzzy. In my opinion, DevOps observability and network observability are not interchangeable. Why would they be?
DevOps teams want to understand the state of applications and the infrastructure on which they reside. NetOps teams need to understand a much larger universe of networks, from the cloud to the user edge.
Both DevOps observability and network observability refer to the need to understand the internal state of a system, but that need to understand is only a problem statement. The solution to that problem is where the differences occur.
Does Anyone Have Network Observability?
First, most NetOps teams care about application performance. They want to collect data from the application environment if they can, such as hypervisors and containers. But they don't stop there. They need to monitor data center networks, wide-area networks (WANs), and campus and branch networks. More recently, they've had to worry about home office networks.
Each network they monitor has become more complex. The data center network has been virtualized and partially extended into the public cloud. The WAN has hybridized, with a mix of managed WAN connectivity, public internet, and 4G/5G. Office networks are a mix of ethernet and Wi-Fi, connected via home internet.
A network observability system must monitor and analyze an extremely diverse and ever-growing data set to understand end-to-end network state. A NetOps team might use five, ten, or even fifty tools to monitor a network by collecting packets, flows, device logs, device metrics, test data, DNS logs, routing table changes, configuration changes, synthetic traffic, and more.
It's a lot to keep track of, and it's hard to find a single tool that can handle it all. In fact, my new research on the concept of network observability found that 83% of IT organizations are interested in streaming data from their network observability tool(s) to a central data lake. Why? Nearly half of them believe a data lake will help them correlate network data across their tools.
Earlier, I wrote that network observability is a bit "fuzzy." I'd argue that it's fuzzy because the problem of network observability is much bigger and more complex than DevOps observability. It may prove impossible for any single tool to solve this problem. That's perfectly okay. But IT organizations must keep this in mind and take a comprehensive approach to network operations tools as they steer toward the promise of network observability.
To learn more about network observability, check out EMA's November 9 webinar, which will highlight market research findings on the topic.
The Latest
To achieve maximum availability, IT leaders must employ domain-agnostic solutions that identify and escalate issues across all telemetry points. These technologies, which we refer to as Artificial Intelligence for IT Operations, create convergence — in other words, they provide IT and DevOps teams with the full picture of event management and downtime ...
APMdigest and leading IT research firm Enterprise Management Associates (EMA) are partnering to bring you the EMA-APMdigest Podcast, a new podcast focused on the latest technologies impacting IT Operations. In Episode 2 - Part 1 Pete Goldin, Editor and Publisher of APMdigest, discusses Network Observability with Shamus McGillicuddy, Vice President of Research, Network Infrastructure and Operations, at EMA ...
CIOs have stepped into the role of digital leader and strategic advisor, according to the 2023 Global CIO Survey from Logicalis ...
Synthetic monitoring is crucial to deploy code with confidence as catching bugs with E2E tests on staging is becoming increasingly difficult. It isn't trivial to provide realistic staging systems, especially because today's apps are intertwined with many third-party APIs ...
Recent EMA field research found that ServiceOps is either an active effort or a formal initiative in 78% of the organizations represented by a global panel of 400+ IT leaders. It is relatively early but gaining momentum across industries and organizations of all sizes globally ...
Managing availability and performance within SAP environments has long been a challenge for IT teams. But as IT environments grow more complex and dynamic, and the speed of innovation in almost every industry continues to accelerate, this situation is becoming a whole lot worse ...
Harnessing the power of network-derived intelligence and insights is critical in detecting today's increasingly sophisticated security threats across hybrid and multi-cloud infrastructure, according to a new research study from IDC ...
Recent research suggests that many organizations are paying for more software than they need. If organizations are looking to reduce IT spend, leaders should take a closer look at the tools being offered to employees, as not all software is essential ...
Organizations are challenged by tool sprawl and data source overload, according to the Grafana Labs Observability Survey 2023, with 52% of respondents reporting that their companies use 6 or more observability tools, including 11% that use 16 or more.
An array of tools purport to maintain availability — the trick is sorting through the noise to find the right one. Let us discuss why availability is so important and then unpack the ROI of deploying Artificial Intelligence for IT Operations (AIOps) during an economic downturn ...