New Relic Enhances AIOps Capabilities
April 15, 2020
Share this

New Relic enhanced New Relic AI, a suite of AIOps capabilities built for on-call DevOps, Site Reliability Engineering (SRE) and network operations center (NOC) teams responsible for operating modern infrastructure.

New Relic AI provides advanced applied intelligence (AI) and machine learning (ML) technologies to help customers detect, diagnose and resolve incidents faster, and continuously improve incident management workflow.

“New Relic's goal is to help reduce the toil and anxiety of running modern systems for engineering teams. We're proud to report that our early-access customers reported that they have seen automatic reductions in alert noise by 50 percent -- and some as much as 80 percent within days,” said Guy Fighel, GVP and Product GM at New Relic. “New Relic AI is the only solution that has the automation, intelligence and scale-out architecture needed to deliver true observability and offer precise insights that today’s modern and complex enterprises require. We continue to push the boundaries to empower DevOps and SRE teams as we enhance our platform relentlessly.”

New Relic AI delivers a holistic AIOps solution that not only understands historical alerts, but also applies machine learning and AI to significantly reduce alert noise, enrich incidents with context, and provide intelligence and automation to on-call teams in real-time. Deeply integrated with the New Relic One observability platform, New Relic AI is an open incident correlation and intelligence solution that is source and data agnostic. With unique access to NRDB, a unified telemetry database, New Relic AI fuels ML models and provides an intelligent, context-rich incident response workflow, drawing on key capabilities that include:

- Proactive Detection to detect problems earlier: Continuously evaluates telemetry data for anomalies and proactively notifies customers in their existing collaboration tools. This allows for quick action to prevent larger problems before they impact customer experience. New Relic AI enables customers to ingest, analyze, and take action on multiple data types, including alerts, logs, metrics, deployment events and more. This gives teams better context into incidents that occur and how they impact the broader environment, so they can diagnose and prioritize problems faster.

- Incident Intelligence to reduce alert noise and diagnose and respond faster: New Relic AI deeply integrates with many data sources to group related alerts and incidents and includes AI/ML-powered suggested correlations to help customers prioritize alerts and focus on the most important issues. Alert noise is automatically reduced by correlating related alerts, events, and incidents, while also suppressing flapping and low-priority alerts. Correlated incidents are enriched with context, automatically classified based on golden signals (i.e. errors, saturation, traffic, latency), as well as identifying related components affected and suggesting responders, to help on-call teams get closer to root cause and take action faster. In addition, it frees users from the steep learning curves, lengthy implementations and complex integrations typically found with other AIOps tools. By leveraging incident correlation, early access customers have reported that they have seen automatic reductions in alert noise by 50 percent.

- Deep integration with existing incident management workflows: New Relic AI integrates with Slack, PagerDuty, ServiceNow, OpsGenie, VictorOps and other tools to fit within customers’ existing incident management workflow. Enriched incidents with relevant context and ML-powered guidance and suggestions are automatically shared in team’s existing workflows, removing the need to switch between tools in times of crisis. Customers can see a live view of ingested data, an intelligent summary of each incident, and have the ability to tune correlations with user feedback.

Share this

The Latest

September 28, 2020

In Episode 9, Sean McDermott, President, CEO and Founder of Windward Consulting Group, joins the AI+ITOPS Podcast to discuss how the pandemic has impacted IT and is driving the need for AIOps ...

September 25, 2020

Michael Olson on the AI+ITOPS Podcast: "I really see AIOps as being a core requirement for observability because it ... applies intelligence to your telemetry data and your incident data ... to potentially predict problems before they happen."

September 24, 2020

Enterprise ITOM and ITSM teams have been welcoming of AIOps, believing that it has the potential to deliver great value to them as their IT environments become more distributed, hybrid and complex. Not so with DevOps teams. It's safe to say they've kept AIOps at arm's length, because they don't think it's relevant nor useful for what they do. Instead, to manage the software code they develop and deploy, they've focused on observability ...

September 23, 2020

The post-pandemic environment has resulted in a major shift on where SREs will be located, with nearly 50% of SREs believing they will be working remotely post COVID-19, as compared to only 19% prior to the pandemic, according to the 2020 SRE Survey Report from Catchpoint and the DevOps Institute ...

September 22, 2020

All application traffic travels across the network. While application performance management tools can offer insight into how critical applications are functioning, they do not provide visibility into the broader network environment. In order to optimize application performance, you need a few key capabilities. Let's explore three steps that can help NetOps teams better support the critical applications upon which your business depends ...

September 21, 2020

In Episode 8, Michael Olson, Director of Product Marketing at New Relic, joins the AI+ITOPS Podcast to discuss how AIOps provides real benefits to IT teams ...

September 18, 2020

Will Cappelli on the AI+ITOPS Podcast: "I'll predict that in 5 years time, APM as we know it will have been completely mutated into an observability plus dynamic analytics capability."

September 17, 2020
One of the benefits of doing the EMA Radar Report: AIOps- A Guide for Investing in Innovation was getting data from all 17 vendors on critical areas ranging from deployment and adoption challenges, to cost and pricing, to architectural and functionality insights across everything from heuristics, to automation, and data assimilation ...
September 16, 2020

When you consider that the average end-user interacts with at least 8 applications, then think about how important those applications are in the overall success of the business and how often the interface between the application and the hardware needs to be updated, it's a potential minefield for business operations. Any single update could explode in your face at any time ...

September 15, 2020

Despite the efforts in modernizing and building a robust infrastructure, IT teams routinely deal with the application, database, hardware, or software outages that can last from a few minutes to several days. These types of incidents can cause financial losses to businesses and damage its reputation ...