New Relic Enhances AIOps Capabilities
April 15, 2020
Share this

New Relic enhanced New Relic AI, a suite of AIOps capabilities built for on-call DevOps, Site Reliability Engineering (SRE) and network operations center (NOC) teams responsible for operating modern infrastructure.

New Relic AI provides advanced applied intelligence (AI) and machine learning (ML) technologies to help customers detect, diagnose and resolve incidents faster, and continuously improve incident management workflow.

“New Relic's goal is to help reduce the toil and anxiety of running modern systems for engineering teams. We're proud to report that our early-access customers reported that they have seen automatic reductions in alert noise by 50 percent -- and some as much as 80 percent within days,” said Guy Fighel, GVP and Product GM at New Relic. “New Relic AI is the only solution that has the automation, intelligence and scale-out architecture needed to deliver true observability and offer precise insights that today’s modern and complex enterprises require. We continue to push the boundaries to empower DevOps and SRE teams as we enhance our platform relentlessly.”

New Relic AI delivers a holistic AIOps solution that not only understands historical alerts, but also applies machine learning and AI to significantly reduce alert noise, enrich incidents with context, and provide intelligence and automation to on-call teams in real-time. Deeply integrated with the New Relic One observability platform, New Relic AI is an open incident correlation and intelligence solution that is source and data agnostic. With unique access to NRDB, a unified telemetry database, New Relic AI fuels ML models and provides an intelligent, context-rich incident response workflow, drawing on key capabilities that include:

- Proactive Detection to detect problems earlier: Continuously evaluates telemetry data for anomalies and proactively notifies customers in their existing collaboration tools. This allows for quick action to prevent larger problems before they impact customer experience. New Relic AI enables customers to ingest, analyze, and take action on multiple data types, including alerts, logs, metrics, deployment events and more. This gives teams better context into incidents that occur and how they impact the broader environment, so they can diagnose and prioritize problems faster.

- Incident Intelligence to reduce alert noise and diagnose and respond faster: New Relic AI deeply integrates with many data sources to group related alerts and incidents and includes AI/ML-powered suggested correlations to help customers prioritize alerts and focus on the most important issues. Alert noise is automatically reduced by correlating related alerts, events, and incidents, while also suppressing flapping and low-priority alerts. Correlated incidents are enriched with context, automatically classified based on golden signals (i.e. errors, saturation, traffic, latency), as well as identifying related components affected and suggesting responders, to help on-call teams get closer to root cause and take action faster. In addition, it frees users from the steep learning curves, lengthy implementations and complex integrations typically found with other AIOps tools. By leveraging incident correlation, early access customers have reported that they have seen automatic reductions in alert noise by 50 percent.

- Deep integration with existing incident management workflows: New Relic AI integrates with Slack, PagerDuty, ServiceNow, OpsGenie, VictorOps and other tools to fit within customers’ existing incident management workflow. Enriched incidents with relevant context and ML-powered guidance and suggestions are automatically shared in team’s existing workflows, removing the need to switch between tools in times of crisis. Customers can see a live view of ingested data, an intelligent summary of each incident, and have the ability to tune correlations with user feedback.

Share this

The Latest

January 20, 2021

Following up the list of Application Performance Management Predictions, APMdigest also asked IT industry experts for their 2021 cloud predictions. Part 1 covers multicloud and hybrid cloud ...

January 19, 2021
Given the limitations of the existing IT solutions to manage data, enterprises are leveraging AIOps to undertake a host of activities. These include understanding and predicting customer behavior, detecting anomalies and determining their reasons, and offering prescriptive advice. It helps to detect dependencies responsible for creating issues in an IT infrastructure. Also, with AI having features such as containerization, continuous monitoring, predictive or adaptive cloud management, enterprises can gain a next-gen perspective on their business ...
January 14, 2021

Modernization projects using an incremental and continuous improvement model achieve superior results when compared to other project-based approaches including the ripping and replacing of core business applications, according to the CHAOS2020 Report from Micro Focus and Standish Group ...

January 13, 2021

Enterprise IT infrastructure never ceases to evolve, as companies continually re-examine and reimagine the network to incorporate new technology advancements and meet changing business requirements. But network change initiatives can be costly and time-consuming without a proactive approach to ensuring the right data is available to drive your initiatives ...

January 12, 2021

Data can be hard — knowing where to get it, where to store it, and most importantly, how to use it, are all questions enterprises need to answer. For most companies, this is an ongoing process in which multiple factors and challenges have arisen. In the Actian Datacast 2020: Hybrid Data Trends Snapshot, we shed light on the challenges of cloud migration and how organizations are leveraging data ...

January 11, 2021

With the COVID-19 pandemic causing economic disruptions all over the world, business organizations are further pressed to accelerate their migration to the cloud. As recovery begins and enterprises resume operations, experts expect to see increased spending on cloud services ...

January 07, 2021

Following up the list of Application Performance Management Predictions, APMdigest also asked IT industry experts for their 2021 network performance predictions. The results span 5G, NPM, SD-WAN and more ...

January 06, 2021

Gartner highlighted the six trends that infrastructure and operations (I&O) leaders must start preparing for in the next 12-18 months ...

January 05, 2021

As the global pandemic continues, it has become increasingly clear that companies across every industry are planning the "next normal" of their workplace with a much longer-term view. They have moved from serially extending temporary work-from-home (WFH) arrangements to establishing permanent policies focused on empowering people to WFE — work-from-everywhere ...

January 04, 2021

The New Year means it is time for DEVOPSdigest's annual list of DevOps predictions. Industry experts offer thoughtful, insightful, and often controversial predictions on how DevOps and related technologies will evolve and impact business in 2021 ...