
Unravel Data announced a new portfolio of capabilities that help customers plan, migrate, and manage modern data applications running on AWS, Microsoft Azure and Google Cloud Platform.
This release leverages artificial intelligence, machine learning, and predictive analytics to baseline on-premises big data deployments and then determine which apps are the best candidates to move to the cloud based on customer defined criteria. Unravel can also help validate the success of a cloud migration and predict capacity based on the customers’ application workloads.
“All indications point to a massive shift in data deployments to the cloud,” said Kunal Agarwal, CEO, Unravel Data. “But there are too many unknowns around cost, visibility and migration that have prevented this transition to the cloud from occurring more quickly. We’re excited to introduce the industry’s only full-stack, AI-powered solution for migrating and managing data apps in the cloud.”
With its latest release, Unravel delivers visibility, insights, recommendations and automation for optimizing data workloads in the cloud. Unravel uses AI, machine learning and advanced analytics to determine the cloud infrastructure needs, the appropriate server instance sizes, and provide automated troubleshooting and auto-tuning of Spark, Hadoop, Kafka, and SQL/NoSQL powered data pipelines running on cloud platforms.
Unravel’s offering helps customers better migrate modern data pipelines to the cloud, establish and meet stringent SLAs for data apps in the cloud, and gain accounting and governance metrics for chargeback, capacity planning, and budget forecasting.
Unravel’s Cloud Operations capabilities include:
- Recommendations for the best apps to migrate – Unravel baselines on-premises performance of the full big data stack and uses AI to identify the best app candidates for migration to cloud. Organizations can avoid migrating apps that aren’t ideal for the cloud and having to repatriate them later.
- Full stack visibility – Unravel uses automation to provide detailed reports and metrics on app usage, performance, cost and chargebacks in the cloud.
- Unified management of the full big data stack on all deployment platforms – Unravel Cloud Migration covers AWS, Azure and Google clouds, as well as on-premises, hybrid environments and multi-cloud settings. Customers get AI-powered troubleshooting, auto-tuning and automated remediation of failures and slowdowns with the same user interface.
- Mapping on-premises infrastructure to cloud server instances – Unravel helps customers choose cloud instance types for their migration based on three strategies:
1. Lift and shift – A one-to-one mapping from physical servers to virtual servers, matching memory, storage and CPU/vCore footprints. This ensures that a cloud deployment will have the same (or more) amount of resources available as a current on-prem environment and minimizes any risks associated with migrating to the cloud.
2. Cost reduction - Provides the most cost-effective instance recommendations based on detailed dependency understanding for minimizing wasted capacity and overprovisioning.
3. Workload fit - Takes into account data collected over time from the on-premises environment, making recommendations for instance types based on the actual workload of applications running in a data center. These recommendations will be based on the VCore, memory, and storage requirements of a customer’s typical runtime environment.
- Cloud capacity planning and chargeback reporting - Unravel can predict cloud storage requirements up to six months out and can provide a detailed accounting of resource consumption and chargeback by user, department or other criteria.
- Migration validation - Unravel can provide a before and after assessment of cloud applications by comparing on-premises performance and resource consumption to the same metrics in the cloud, thereby validating the relative success of the migration.
Cloud services supported by the Unravel platform today include IaaS deployments on Azure, AWS and Google Cloud Platform and PaaS services on Azure HDInsight and AWS EMR. Supported services as part of Unravel’s early access program include AWS Redshift and AWS Athena.
Unravel is available now.
The Latest
As businesses increasingly rely on high-performance applications to deliver seamless user experiences, the demand for fast, reliable, and scalable data storage systems has never been greater. Redis — an open-source, in-memory data structure store — has emerged as a popular choice for use cases ranging from caching to real-time analytics. But with great performance comes the need for vigilant monitoring ...
Kubernetes was not initially designed with AI's vast resource variability in mind, and the rapid rise of AI has exposed Kubernetes limitations, particularly when it comes to cost and resource efficiency. Indeed, AI workloads differ from traditional applications in that they require a staggering amount and variety of compute resources, and their consumption is far less consistent than traditional workloads ... Considering the speed of AI innovation, teams cannot afford to be bogged down by these constant infrastructure concerns. A solution is needed ...
AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...
Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...
A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...
IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...
A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...
According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...
2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...
Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...