Skip to main content

2022 to 2025 AIOps Predictions

Where will AIOps be in five years? Here's what the vendors and thought leaders in the AIOps space had to share
Sean McDermott
Windward Consulting Group

From forecasting the next binge worthy show on your Netflix to advancing algorithms for self-driving cars, AI is more integrated into life than we thought possible. When it comes to AIOps predictions, there's no question of AI's value in predictive intelligence and faster problem resolution for IT teams. In fact, Gartner has reported that there is no future for IT Operations without AIOps. The estimated market size for AIOps is $1.5 billion, with a compound annual growth rate (CAGR) of around 15% between 2020 and 2025.

So, where is AIOps headed in five years? Here's what the vendors and thought leaders in the AIOps space had to share on the Find Flow broadcast:

BigPanda– Build confidence in AI with transparency

"… just like you would expect with any kind of application development shop, they can test and preview the results of those changes to the machine running logic before it's deployed in production. […] And what that means for enterprise and users is they can actually start to gain trust in […] machine learning, because they know that they can see what it is doing."
Mohan Kompella, Product Marketing Lead at BigPanda

AIOps can be shrouded in a lot of mystery for many IT professionals, especially if they don't understand how the AI works in the IT environment. When it comes to machine learning, engineers want to know what it's doing and how it works. Mohan said, "AIOps customers are looking for a product that provides full transparency, testability, and controllability."

That's why AIOps features and platforms of the future should be human-explainable. Not only are systems deployed with an out-of-box ML model, they should also start reducing noise in 6-8 weeks. Over the course of those weeks, the noise reduction rate is around 70-75 percent as the AI learns the environment.

That's great, but what is most important is that the AI begins to make suggestions to IT teams for how to improve the system. It doesn't make changes on its own. An AI should not make autonomous decisions for users. It should suggest a new correlation pattern and then the user can examine it, test it, make changes, and deploy it in production as they see fit. That's the power of the AI + Human collaboration that we'll see more of in the next three to five years.

"Everybody understands what AIOps is, what are the benefits. Now they're all interested in 'how do we get there?' So I think the discussion now is that frictionless is the keyword."
Bhaskar Krishnamsetty, Chief Product Officer at CloudFabrix

Over the last two years, we've seen a shift in the dialogue around AIOps. The question used to be "What is AIOps?" Now most IT leaders are aware of what AIOps is and the benefits. The question now is "How do we get there?" More importantly, "How do we achieve frictionless AIOps maturity?"

Bhaskar and Tejo Prayaga, CloudFabrix Sr. Director, Product Management, both highlight that frictionless AIOps adoption is measured by the ease of implementation. There are two categories: technically frictionless and culturally frictionless. You need both for a smooth AIOps adoption.

Technically frictionless adoption refers to the time to value, data integrations, and data plumbing. All of this is part of the AIOps journey. While it may be time consuming for adopters, there are experts out there to help guide the process to complete maturity. But technical application is only part of AIOps adoption.

People management is the other half of frictionless AIOps adoption. Those looking to integrate AI in the IT department should carefully plan and consider how this change will affect the team. People are an important part of the success of an AIOps strategy. So, taking steps to train your team and make them integral to the implementation process will ensure frictionless AIOps adoption at a cultural level.

"… there's gonna be a shakeout as people realize when they're looking for a vendor in this space, the stuff that looks shiny … claims to be AIOps turns out to be a first generation SaaS product using the rules based system … The future looks like a tool that can cover the entirety of the observability data sets, and provide timely insights, using advanced algorithms that are easy to use because they're advanced, and delivering in a package that can scale."
Phil Tee, CEO of Moogsoft

To say that a lot has changed in the last few years is an understatement. If we thought technological advancements were happening rapidly, it's nothing compared to where we are today with AI integrations in IT Operations. In fact, we're already pioneering the next generation of AI algorithms. Hello, Gen 2 AIOps!

The real reason behind our latest advancements in AIOps is due to the 2020 pandemic. When everybody shifted to remote, this also forced IT operations to shift the whole infrastructure from centralized to application-based. Not only were data points growing exponentially, but they were also sporadically dispersed everywhere. Making work accessible and available, but at the same time secure and contained has been nothing short of a big lift for IT teams.

Phil says that AIOps has become an inevitable necessity for many organizations. But more important are the vendors that have evolved the AI algorithms to suit these new IT environments. These are the vendors to watch, because they will re-imagine and renovate their entire platform to suit this new Gen 2 AIOps. Organizations aren't going to get less complex and data usage isn't slowing down.

So, it's crucial that the AIOps of today comfortably consume metrics and process them through an infrastructure that is adept at pinpointing incidents and taking action.

The full version of this blog was first posted on Windward's website. Click here to read the original blog.

Sean McDermott is the Founder of Windward Consulting Group and RedMonocle

Hot Topics

The Latest

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

In March, New Relic published the State of Observability for Media and Entertainment Report to share insights, data, and analysis into the adoption and business value of observability across the media and entertainment industry. Here are six key takeaways from the report ...

Regardless of their scale, business decisions often take time, effort, and a lot of back-and-forth discussion to reach any sort of actionable conclusion ... Any means of streamlining this process and getting from complex problems to optimal solutions more efficiently and reliably is key. How can organizations optimize their decision-making to save time and reduce excess effort from those involved? ...

As enterprises accelerate their cloud adoption strategies, CIOs are routinely exceeding their cloud budgets — a concern that's about to face additional pressure from an unexpected direction: uncertainty over semiconductor tariffs. The CIO Cloud Trends Survey & Report from Azul reveals the extent continued cloud investment despite cost overruns, and how organizations are attempting to bring spending under control ...

Image
Azul

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

2022 to 2025 AIOps Predictions

Where will AIOps be in five years? Here's what the vendors and thought leaders in the AIOps space had to share
Sean McDermott
Windward Consulting Group

From forecasting the next binge worthy show on your Netflix to advancing algorithms for self-driving cars, AI is more integrated into life than we thought possible. When it comes to AIOps predictions, there's no question of AI's value in predictive intelligence and faster problem resolution for IT teams. In fact, Gartner has reported that there is no future for IT Operations without AIOps. The estimated market size for AIOps is $1.5 billion, with a compound annual growth rate (CAGR) of around 15% between 2020 and 2025.

So, where is AIOps headed in five years? Here's what the vendors and thought leaders in the AIOps space had to share on the Find Flow broadcast:

BigPanda– Build confidence in AI with transparency

"… just like you would expect with any kind of application development shop, they can test and preview the results of those changes to the machine running logic before it's deployed in production. […] And what that means for enterprise and users is they can actually start to gain trust in […] machine learning, because they know that they can see what it is doing."
Mohan Kompella, Product Marketing Lead at BigPanda

AIOps can be shrouded in a lot of mystery for many IT professionals, especially if they don't understand how the AI works in the IT environment. When it comes to machine learning, engineers want to know what it's doing and how it works. Mohan said, "AIOps customers are looking for a product that provides full transparency, testability, and controllability."

That's why AIOps features and platforms of the future should be human-explainable. Not only are systems deployed with an out-of-box ML model, they should also start reducing noise in 6-8 weeks. Over the course of those weeks, the noise reduction rate is around 70-75 percent as the AI learns the environment.

That's great, but what is most important is that the AI begins to make suggestions to IT teams for how to improve the system. It doesn't make changes on its own. An AI should not make autonomous decisions for users. It should suggest a new correlation pattern and then the user can examine it, test it, make changes, and deploy it in production as they see fit. That's the power of the AI + Human collaboration that we'll see more of in the next three to five years.

"Everybody understands what AIOps is, what are the benefits. Now they're all interested in 'how do we get there?' So I think the discussion now is that frictionless is the keyword."
Bhaskar Krishnamsetty, Chief Product Officer at CloudFabrix

Over the last two years, we've seen a shift in the dialogue around AIOps. The question used to be "What is AIOps?" Now most IT leaders are aware of what AIOps is and the benefits. The question now is "How do we get there?" More importantly, "How do we achieve frictionless AIOps maturity?"

Bhaskar and Tejo Prayaga, CloudFabrix Sr. Director, Product Management, both highlight that frictionless AIOps adoption is measured by the ease of implementation. There are two categories: technically frictionless and culturally frictionless. You need both for a smooth AIOps adoption.

Technically frictionless adoption refers to the time to value, data integrations, and data plumbing. All of this is part of the AIOps journey. While it may be time consuming for adopters, there are experts out there to help guide the process to complete maturity. But technical application is only part of AIOps adoption.

People management is the other half of frictionless AIOps adoption. Those looking to integrate AI in the IT department should carefully plan and consider how this change will affect the team. People are an important part of the success of an AIOps strategy. So, taking steps to train your team and make them integral to the implementation process will ensure frictionless AIOps adoption at a cultural level.

"… there's gonna be a shakeout as people realize when they're looking for a vendor in this space, the stuff that looks shiny … claims to be AIOps turns out to be a first generation SaaS product using the rules based system … The future looks like a tool that can cover the entirety of the observability data sets, and provide timely insights, using advanced algorithms that are easy to use because they're advanced, and delivering in a package that can scale."
Phil Tee, CEO of Moogsoft

To say that a lot has changed in the last few years is an understatement. If we thought technological advancements were happening rapidly, it's nothing compared to where we are today with AI integrations in IT Operations. In fact, we're already pioneering the next generation of AI algorithms. Hello, Gen 2 AIOps!

The real reason behind our latest advancements in AIOps is due to the 2020 pandemic. When everybody shifted to remote, this also forced IT operations to shift the whole infrastructure from centralized to application-based. Not only were data points growing exponentially, but they were also sporadically dispersed everywhere. Making work accessible and available, but at the same time secure and contained has been nothing short of a big lift for IT teams.

Phil says that AIOps has become an inevitable necessity for many organizations. But more important are the vendors that have evolved the AI algorithms to suit these new IT environments. These are the vendors to watch, because they will re-imagine and renovate their entire platform to suit this new Gen 2 AIOps. Organizations aren't going to get less complex and data usage isn't slowing down.

So, it's crucial that the AIOps of today comfortably consume metrics and process them through an infrastructure that is adept at pinpointing incidents and taking action.

The full version of this blog was first posted on Windward's website. Click here to read the original blog.

Sean McDermott is the Founder of Windward Consulting Group and RedMonocle

Hot Topics

The Latest

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

In March, New Relic published the State of Observability for Media and Entertainment Report to share insights, data, and analysis into the adoption and business value of observability across the media and entertainment industry. Here are six key takeaways from the report ...

Regardless of their scale, business decisions often take time, effort, and a lot of back-and-forth discussion to reach any sort of actionable conclusion ... Any means of streamlining this process and getting from complex problems to optimal solutions more efficiently and reliably is key. How can organizations optimize their decision-making to save time and reduce excess effort from those involved? ...

As enterprises accelerate their cloud adoption strategies, CIOs are routinely exceeding their cloud budgets — a concern that's about to face additional pressure from an unexpected direction: uncertainty over semiconductor tariffs. The CIO Cloud Trends Survey & Report from Azul reveals the extent continued cloud investment despite cost overruns, and how organizations are attempting to bring spending under control ...

Image
Azul

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...