Skip to main content

5 Ways to Gain Operational Insights on Big Data Analytics

Michael Segal

We are starting to see an age where speed-of-thought analytical tools are helping to quickly analyze large volumes of data to uncover market trends, customer preferences, gain competitive insight and collect other useful business information. Likewise, utilizing ‘big data’ creates new opportunities to gain deep insight into operational efficiencies.

The realization by business executives that corporate data is an extremely valuable asset, and that effective analysis of big data may have a profound impact on their bottom line is the key driver in the adoption of this trend. According to IDC, the big data and analytics market will reach $125 billion worldwide in 2015, which will help enterprises across all industries gain new operational insights.

Effective integration of big data analytics within corporate business processes is critical to harness the wealth of knowledge that can be extracted from corporate data. While a variety of structured and unstructured big data is stored in large volumes on different servers within the organization, virtually all this data traverses the network at one time or another. Analysis of the traffic data traversing the network can provide deep operational insight, provided there is an end-to-end holistic visibility of this data.

To ensure holistic visibility, the first step is to select a performance management platform that offers the scalability and flexibility needed to analyze large volumes of data in real-time.

The solution should also include packet flow switches to enable passive and intelligent distribution of big data that traverses the network to the different location where the data is analyzed.

Here are five ways IT operations can use Big Data analytics to achieve operational efficiencies:

1. Holistic end-to-end visibility

A holistic view, from the data center and network to the users who consume business services, helps IT see the relationships and interdependencies across all service delivery components; including applications, network, servers, databases and enabling protocols in order to see which user communities and services are utilizing the network and how they’re performing.

2. Big Data analysis based on deep packet inspection

Deep packet analysis can be used to generate a metadata at an atomic level which provides comprehensive, real-time view of all service components, including physical and virtual networks, workloads, protocols, servers, databases, users and devices to help desktop, network, telecom and application teams see through the same lens.

3. Decreased downtime

A Forrester survey shows 91% of IT respondents cite problem identification as the number one improvement needed in their organization’s IT operations. As applications and business services’ complexity increases, reducing costly downtime will hinge on proactively detecting service degradations and rapid triage to identify its origin, which can be done through the right performance management platform.

4. Capacity planning

Accurate evidence is vital when it comes to making capacity planning decisions for your network and business processes. Benefits of metadata at an atomic level will aid in understanding the current and future needs of your organization’s services, applications and its community of users in order to identify how resources are being consumed.

5. Hyper scalability

Big data analytic tools that can scale to increasing data traffic flows provide key vantage points throughout your IT environment and offer rapid insight to meet the monitoring needs of high-density locations in data center and private/hybrid cloud deployments to help organizations achieve consistent service quality and operational excellence.

Network traffic Big Data analytics, made possible by today’s service performance management platforms, is changing the scope and quality of IT operational efficiencies. These platforms and technologies are not only protecting organizations against service degradations and downtime, but also serve to add new dimensions and context around interactive data making corporate data today an extremely valuable asset.

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

5 Ways to Gain Operational Insights on Big Data Analytics

Michael Segal

We are starting to see an age where speed-of-thought analytical tools are helping to quickly analyze large volumes of data to uncover market trends, customer preferences, gain competitive insight and collect other useful business information. Likewise, utilizing ‘big data’ creates new opportunities to gain deep insight into operational efficiencies.

The realization by business executives that corporate data is an extremely valuable asset, and that effective analysis of big data may have a profound impact on their bottom line is the key driver in the adoption of this trend. According to IDC, the big data and analytics market will reach $125 billion worldwide in 2015, which will help enterprises across all industries gain new operational insights.

Effective integration of big data analytics within corporate business processes is critical to harness the wealth of knowledge that can be extracted from corporate data. While a variety of structured and unstructured big data is stored in large volumes on different servers within the organization, virtually all this data traverses the network at one time or another. Analysis of the traffic data traversing the network can provide deep operational insight, provided there is an end-to-end holistic visibility of this data.

To ensure holistic visibility, the first step is to select a performance management platform that offers the scalability and flexibility needed to analyze large volumes of data in real-time.

The solution should also include packet flow switches to enable passive and intelligent distribution of big data that traverses the network to the different location where the data is analyzed.

Here are five ways IT operations can use Big Data analytics to achieve operational efficiencies:

1. Holistic end-to-end visibility

A holistic view, from the data center and network to the users who consume business services, helps IT see the relationships and interdependencies across all service delivery components; including applications, network, servers, databases and enabling protocols in order to see which user communities and services are utilizing the network and how they’re performing.

2. Big Data analysis based on deep packet inspection

Deep packet analysis can be used to generate a metadata at an atomic level which provides comprehensive, real-time view of all service components, including physical and virtual networks, workloads, protocols, servers, databases, users and devices to help desktop, network, telecom and application teams see through the same lens.

3. Decreased downtime

A Forrester survey shows 91% of IT respondents cite problem identification as the number one improvement needed in their organization’s IT operations. As applications and business services’ complexity increases, reducing costly downtime will hinge on proactively detecting service degradations and rapid triage to identify its origin, which can be done through the right performance management platform.

4. Capacity planning

Accurate evidence is vital when it comes to making capacity planning decisions for your network and business processes. Benefits of metadata at an atomic level will aid in understanding the current and future needs of your organization’s services, applications and its community of users in order to identify how resources are being consumed.

5. Hyper scalability

Big data analytic tools that can scale to increasing data traffic flows provide key vantage points throughout your IT environment and offer rapid insight to meet the monitoring needs of high-density locations in data center and private/hybrid cloud deployments to help organizations achieve consistent service quality and operational excellence.

Network traffic Big Data analytics, made possible by today’s service performance management platforms, is changing the scope and quality of IT operational efficiencies. These platforms and technologies are not only protecting organizations against service degradations and downtime, but also serve to add new dimensions and context around interactive data making corporate data today an extremely valuable asset.

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...