Skip to main content

Performance Monitoring: Understanding What's Happening Right Now

Insights from The Every Computer Performance Book

Performance monitoring is about understanding what's happening right now. It usually includes dealing with immediate performance problems or collecting data that will be used by the other performance tools (such as capacity planning) to plan for future peak loads.

In performance monitoring you need to know three things:

- The incoming workload

- The resulting resource consumption

- What is normal under this load

Without these three things you can only solve the most obvious performance problems and have to rely on tools outside the scientific realm (such as a Ouija Board, or a Magic 8 Ball) to predict the future.

You need to know the incoming workload (what the users are asking your system to do) because all computers run just fine under no load. Performance problems crop up as the load goes up. These performance problems come in two basic flavors: Expected and Unexpected.

Expected problems are when the users are simply asking the application for more things per second than it can do. You see this during an expected peak in demand like the biggest shopping day of the year. Expected problems are no fun, but they can be foreseen and, depending on the situation, your response might be to endure them, because money is tight or because the fix might introduce too much risk.

Unexpected problems are when the incoming workload should be well within the capabilities of the application, but something is wrong and either the end-user performance is bad or some performance meter makes no sense. Unexpected problems cause much unpleasantness and demand rapid diagnosis and repair.

Know What is Normal

The key to all performance work is to know what is normal. Let me illustrate that with a trip to the grocery store.

Image removed.

One day I was buying three potatoes and an onion for a soup I was making. The new kid behind the cash register looked at me and said: “That will be $22.50.” What surprised me was the total lack of internal error checking at this outrageous price (in 2012) for three potatoes and an onion. This could be a simple case of them not caring about doing a good job, but my more charitable assessment is that he had no idea what “normal” was, so everything the register told him had to be taken at face value. Don't be like that kid.

On any given day you, as the performance person, should be able to have a fairly good idea of how much work the users are asking the system to do and what the major performance meters are showing. If you have a good sense of what is normal for your situation, then any abnormality will jump right out at you in the same way you notice subtle changes in a loved one that a stranger would miss. This can save your bacon because if you spot the unexpected utilization before the peak occurs, then you have time to find and fix the problem before the system comes under a peak load.

There are some challenges in getting this data. For example:

- There is no workload data.

- The only workload data available (ex: per day transaction volume) is at too low a resolution to be any good for rapid performance changes.

- The workload is made of many different transaction types (buy, sell, etc.) It's not clear what to meter.

With rare exception I've found the lack of easily available workload information to be the single best predictor of how bad the overall situation is performance wise. Over the years as I visited company after company this led me to develop Bob's First Rule of Performance Work: “The less a company knows about the work their system did in the last five minutes, the more deeply screwed up they are.”

What meters should you collect? Meters fall into big categories. There are utilization meters that tell you how busy a resource is, there are count meters that count interesting events (some good, some bad), and there are duration meters that tell you how long something took. As the commemorative plate infomercial says: “Collect them all!” Please don't wait for perfection. Start somewhere, collect something and, as you explore and discover, add newly discovered meters to your collection.

When should you run the meters? Your meters should be running all the time (like bank security cameras) so that when weird things happen you have a multitude of clues to look at. You will want to search this data by time (What happened at 10:30?), so be sure to include timestamps.

The data you collect can also be used to predict the future with tools like: Capacity Planning, Load Testing, and Modeling.

This blog is based on: The Every Computer Performance Book available from Amazon and on iTunes.

ABOUT Bob Wescott

Bob Wescott is the author of The Every Computer Performance Book. Since 1987, Wescott has worked in the field of computer performance, doing professional services work and teaching how to do capacity planning, load testing, simulation modeling and web performance for Gomez/Compuware, HyPerformix/CA and Stratus Computer/Technologies. Now, Wescott is mostly retired, and his job is to give back what he has been given. His latest project is The Every Computer Performance Blog based on the book.

Related Links:

The Every Computer Performance Blog

The Every Computer Performance Book

Image removed.

Hot Topics

The Latest

A new wave of tariffs, some exceeding 100%, is sending shockwaves across the technology industry. Enterprises are grappling with sudden, dramatic cost increases that threaten to disrupt carefully planned budgets, sourcing strategies, and deployment plans. For CIOs and CTOs, this isn't just an economic setback; it's a wake-up call. The era of predictable cloud pricing and stable global supply chains is over ...

As artificial intelligence (AI) adoption gains momentum, network readiness is emerging as a critical success factor. AI workloads generate unpredictable bursts of traffic, demanding high-speed connectivity that is low latency and lossless. AI adoption will require upgrades and optimizations in data center networks and wide-area networks (WANs). This is prompting enterprise IT teams to rethink, re-architect, and upgrade their data center and WANs to support AI-driven operations ...

Artificial intelligence (AI) is core to observability practices, with some 41% of respondents reporting AI adoption as a core driver of observability, according to the State of Observability for Financial Services and Insurance report from New Relic ...

Application performance monitoring (APM) is a game of catching up — building dashboards, setting thresholds, tuning alerts, and manually correlating metrics to root causes. In the early days, this straightforward model worked as applications were simpler, stacks more predictable, and telemetry was manageable. Today, the landscape has shifted, and more assertive tools are needed ...

Cloud adoption has accelerated, but backup strategies haven't always kept pace. Many organizations continue to rely on backup strategies that were either lifted directly from on-prem environments or use cloud-native tools in limited, DR-focused ways ... Eon uncovered a handful of critical gaps regarding how organizations approach cloud backup. To capture these prevailing winds, we gathered insights from 150+ IT and cloud leaders at the recent Google Cloud Next conference, which we've compiled into the 2025 State of Cloud Data Backup ...

Private clouds are no longer playing catch-up, and public clouds are no longer the default as organizations recalibrate their cloud strategies, according to the Private Cloud Outlook 2025 report from Broadcom. More than half (53%) of survey respondents say private cloud is their top priority for deploying new workloads over the next three years, while 69% are considering workload repatriation from public to private cloud, with one-third having already done so ...

As organizations chase productivity gains from generative AI, teams are overwhelmingly focused on improving delivery speed (45%) over enhancing software quality (13%), according to the Quality Transformation Report from Tricentis ...

Back in March of this year ... MongoDB's stock price took a serious tumble ... In my opinion, it reflects a deeper structural issue in enterprise software economics altogether — vendor lock-in ...

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...

Performance Monitoring: Understanding What's Happening Right Now

Insights from The Every Computer Performance Book

Performance monitoring is about understanding what's happening right now. It usually includes dealing with immediate performance problems or collecting data that will be used by the other performance tools (such as capacity planning) to plan for future peak loads.

In performance monitoring you need to know three things:

- The incoming workload

- The resulting resource consumption

- What is normal under this load

Without these three things you can only solve the most obvious performance problems and have to rely on tools outside the scientific realm (such as a Ouija Board, or a Magic 8 Ball) to predict the future.

You need to know the incoming workload (what the users are asking your system to do) because all computers run just fine under no load. Performance problems crop up as the load goes up. These performance problems come in two basic flavors: Expected and Unexpected.

Expected problems are when the users are simply asking the application for more things per second than it can do. You see this during an expected peak in demand like the biggest shopping day of the year. Expected problems are no fun, but they can be foreseen and, depending on the situation, your response might be to endure them, because money is tight or because the fix might introduce too much risk.

Unexpected problems are when the incoming workload should be well within the capabilities of the application, but something is wrong and either the end-user performance is bad or some performance meter makes no sense. Unexpected problems cause much unpleasantness and demand rapid diagnosis and repair.

Know What is Normal

The key to all performance work is to know what is normal. Let me illustrate that with a trip to the grocery store.

Image removed.

One day I was buying three potatoes and an onion for a soup I was making. The new kid behind the cash register looked at me and said: “That will be $22.50.” What surprised me was the total lack of internal error checking at this outrageous price (in 2012) for three potatoes and an onion. This could be a simple case of them not caring about doing a good job, but my more charitable assessment is that he had no idea what “normal” was, so everything the register told him had to be taken at face value. Don't be like that kid.

On any given day you, as the performance person, should be able to have a fairly good idea of how much work the users are asking the system to do and what the major performance meters are showing. If you have a good sense of what is normal for your situation, then any abnormality will jump right out at you in the same way you notice subtle changes in a loved one that a stranger would miss. This can save your bacon because if you spot the unexpected utilization before the peak occurs, then you have time to find and fix the problem before the system comes under a peak load.

There are some challenges in getting this data. For example:

- There is no workload data.

- The only workload data available (ex: per day transaction volume) is at too low a resolution to be any good for rapid performance changes.

- The workload is made of many different transaction types (buy, sell, etc.) It's not clear what to meter.

With rare exception I've found the lack of easily available workload information to be the single best predictor of how bad the overall situation is performance wise. Over the years as I visited company after company this led me to develop Bob's First Rule of Performance Work: “The less a company knows about the work their system did in the last five minutes, the more deeply screwed up they are.”

What meters should you collect? Meters fall into big categories. There are utilization meters that tell you how busy a resource is, there are count meters that count interesting events (some good, some bad), and there are duration meters that tell you how long something took. As the commemorative plate infomercial says: “Collect them all!” Please don't wait for perfection. Start somewhere, collect something and, as you explore and discover, add newly discovered meters to your collection.

When should you run the meters? Your meters should be running all the time (like bank security cameras) so that when weird things happen you have a multitude of clues to look at. You will want to search this data by time (What happened at 10:30?), so be sure to include timestamps.

The data you collect can also be used to predict the future with tools like: Capacity Planning, Load Testing, and Modeling.

This blog is based on: The Every Computer Performance Book available from Amazon and on iTunes.

ABOUT Bob Wescott

Bob Wescott is the author of The Every Computer Performance Book. Since 1987, Wescott has worked in the field of computer performance, doing professional services work and teaching how to do capacity planning, load testing, simulation modeling and web performance for Gomez/Compuware, HyPerformix/CA and Stratus Computer/Technologies. Now, Wescott is mostly retired, and his job is to give back what he has been given. His latest project is The Every Computer Performance Blog based on the book.

Related Links:

The Every Computer Performance Blog

The Every Computer Performance Book

Image removed.

Hot Topics

The Latest

A new wave of tariffs, some exceeding 100%, is sending shockwaves across the technology industry. Enterprises are grappling with sudden, dramatic cost increases that threaten to disrupt carefully planned budgets, sourcing strategies, and deployment plans. For CIOs and CTOs, this isn't just an economic setback; it's a wake-up call. The era of predictable cloud pricing and stable global supply chains is over ...

As artificial intelligence (AI) adoption gains momentum, network readiness is emerging as a critical success factor. AI workloads generate unpredictable bursts of traffic, demanding high-speed connectivity that is low latency and lossless. AI adoption will require upgrades and optimizations in data center networks and wide-area networks (WANs). This is prompting enterprise IT teams to rethink, re-architect, and upgrade their data center and WANs to support AI-driven operations ...

Artificial intelligence (AI) is core to observability practices, with some 41% of respondents reporting AI adoption as a core driver of observability, according to the State of Observability for Financial Services and Insurance report from New Relic ...

Application performance monitoring (APM) is a game of catching up — building dashboards, setting thresholds, tuning alerts, and manually correlating metrics to root causes. In the early days, this straightforward model worked as applications were simpler, stacks more predictable, and telemetry was manageable. Today, the landscape has shifted, and more assertive tools are needed ...

Cloud adoption has accelerated, but backup strategies haven't always kept pace. Many organizations continue to rely on backup strategies that were either lifted directly from on-prem environments or use cloud-native tools in limited, DR-focused ways ... Eon uncovered a handful of critical gaps regarding how organizations approach cloud backup. To capture these prevailing winds, we gathered insights from 150+ IT and cloud leaders at the recent Google Cloud Next conference, which we've compiled into the 2025 State of Cloud Data Backup ...

Private clouds are no longer playing catch-up, and public clouds are no longer the default as organizations recalibrate their cloud strategies, according to the Private Cloud Outlook 2025 report from Broadcom. More than half (53%) of survey respondents say private cloud is their top priority for deploying new workloads over the next three years, while 69% are considering workload repatriation from public to private cloud, with one-third having already done so ...

As organizations chase productivity gains from generative AI, teams are overwhelmingly focused on improving delivery speed (45%) over enhancing software quality (13%), according to the Quality Transformation Report from Tricentis ...

Back in March of this year ... MongoDB's stock price took a serious tumble ... In my opinion, it reflects a deeper structural issue in enterprise software economics altogether — vendor lock-in ...

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...