The Pros & Cons of Flow & Packet Data - Part 1
February 22, 2022

Jay Botelho
LiveAction

Share this

Designing and maintaining a network that delivers uninterrupted performance is a crucial function of most NetOps teams. But with new technology challenges around cloud and software defined architectures, many struggle to optimize and troubleshoot the high-performance networks of today.

According to a recent survey from LiveAction, 20% of NetOps teams are focused on improving application performance across the network, 19% are focused on improving network monitoring, and 15% are focused on improving performance at remote sites. Doing this effectively requires visibility into flow and packet data. When aggregated and analyzed properly, NetOps teams can gain valuable insights and operate more predictable, high-performing networks.

NetOps teams traditionally rely on network performance monitoring solutions to collect this data, but what are the pros and cons of flow and packet data and how is it used to troubleshoot networks?

First, let's quickly define flow and packet data. The goal of network flow monitoring is to tally, log, and analyze all network traffic as it passes through routers and other network devices, essentially creating a summary model of network usage. Deep Packet Inspection (DPI) is a process commonly used to inspect the payload content of each packet to make determinations about whether to act on that packet by rejecting it or allowing it to pass through the network. DPI can also be used to passively collect the traffic traversing the network to add visibility and troubleshooting capabilities into network monitoring solutions.

Packet capture is also used to store a mirror copy of network packets for detailed network analysis, using forensic search and filtering. The stored mirror copy can later be examined for a particular time frame, when new performance, security, or forensic incidents arise. When network messages are packetized (broken into pieces), they are then routed over the internet to other connections to be reassembled at their destination. Each packet is generally organized into three segments regardless of size — the header, payload and footer. As packets flow through the network routers, their headers are read and "fingerprinted" based on five to seven packet header attributes.

Today, most routers have some brand of xFlow export feature that allows flow data to be sent from the router to a collector and analyzer. Netflow is the de facto industry flow protocol (originating from Cisco), but other popular protocols include IPFIX, J-Flow, and sFlow. Source and Destination addresses tell who the originator and receiver of the traffic are. Ports and Class of Service tell what applications are in use and their traffic priority. Device interfaces tell how devices are utilizing traffic. By tallying packets, the total traffic flow amount can be determined. Timestamps are useful for placing flows in time and determining their rates. And finally, Application and Network Latency provide measurements about how long each transaction takes.

What are the pros of flow and packet data?

First, flow data is simple to set up. Most routers and switches come standard with the xFlow protocol feature. This means you get vendor-agnostic visibility across just about every network segment. Capturing flow data also requires no extra cabling or equipment, and in most cases no extra licensing, providing excellent network visibility essentially "for free." It also has low network bandwidth overhead since flow data approximates only 0.5% of network traffic, and no clients are necessary on end systems.

For Packet data, it's valuable because it contains every bit of information for every transaction on the network. It allows NetOps to understand bandwidth usage by analyzing details of application and user behavior.

Excessive bandwidth utilization often occurs over very small time periods, typically referred to as "microbursts" since these event happen over microseconds to milliseconds. These events are hidden by the typical reporting rates of xFlow data, but are easily exposed by packet data.

Packet data is also ideal for detailed monitoring and troubleshooting on critical applications, servers and connections. This helps with answering critical questions, like whether the network or the application is the root cause of a problem. Packet data provide specific, interpacket timing, and can expose critical data in payloads that provide proof of application problems. Packet data also offer significant name discovery, such as application names, file names, website URLs, and hostnames, which can be used for both detailed troubleshooting and reporting on custom, web-based applications.

Go to: The Pros and Cons of Flow and Packet Data - Part 2

Jay Botelho is Senior Director of Product Management at LiveAction
Share this

The Latest

April 24, 2024

Over the last 20 years Digital Employee Experience has become a necessity for companies committed to digital transformation and improving IT experiences. In fact, by 2025, more than 50% of IT organizations will use digital employee experience to prioritize and measure digital initiative success ...

April 23, 2024

While most companies are now deploying cloud-based technologies, the 2024 Secure Cloud Networking Field Report from Aviatrix found that there is a silent struggle to maximize value from those investments. Many of the challenges organizations have faced over the past several years have evolved, but continue today ...

April 22, 2024

In our latest research, Cisco's The App Attention Index 2023: Beware the Application Generation, 62% of consumers report their expectations for digital experiences are far higher than they were two years ago, and 64% state they are less forgiving of poor digital services than they were just 12 months ago ...

April 19, 2024

In MEAN TIME TO INSIGHT Episode 5, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses the network source of truth ...

April 18, 2024

A vast majority (89%) of organizations have rapidly expanded their technology in the past few years and three quarters (76%) say it's brought with it increased "chaos" that they have to manage, according to Situation Report 2024: Managing Technology Chaos from Software AG ...

April 17, 2024

In 2024 the number one challenge facing IT teams is a lack of skilled workers, and many are turning to automation as an answer, according to IT Trends: 2024 Industry Report ...

April 16, 2024

Organizations are continuing to embrace multicloud environments and cloud-native architectures to enable rapid transformation and deliver secure innovation. However, despite the speed, scale, and agility enabled by these modern cloud ecosystems, organizations are struggling to manage the explosion of data they create, according to The state of observability 2024: Overcoming complexity through AI-driven analytics and automation strategies, a report from Dynatrace ...

April 15, 2024

Organizations recognize the value of observability, but only 10% of them are actually practicing full observability of their applications and infrastructure. This is among the key findings from the recently completed Logz.io 2024 Observability Pulse Survey and Report ...

April 11, 2024

Businesses must adopt a comprehensive Internet Performance Monitoring (IPM) strategy, says Enterprise Management Associates (EMA), a leading IT analyst research firm. This strategy is crucial to bridge the significant observability gap within today's complex IT infrastructures. The recommendation is particularly timely, given that 99% of enterprises are expanding their use of the Internet as a primary connectivity conduit while facing challenges due to the inefficiency of multiple, disjointed monitoring tools, according to Modern Enterprises Must Boost Observability with Internet Performance Monitoring, a new report from EMA and Catchpoint ...

April 10, 2024

Choosing the right approach is critical with cloud monitoring in hybrid environments. Otherwise, you may drive up costs with features you don’t need and risk diminishing the visibility of your on-premises IT ...