Raise The Bar with Machine Learning for Improved Customer Service
February 20, 2018

Holly Simmons
ServiceNow

Share this

For today's executives, machine learning is the latest term to get hyped before slowly becoming a reality. And in fact, the majority of CIOs have now begun to take advantage of this transformational, labor-saving technology for customer service, IT, and other parts of the organization.

More than two-thirds of CIOs believe that decisions made by machines will be more accurate than human-made decisions

The Global CIO Point of View report compiled by ServiceNow notes that 89 percent of organizations are either in the planning stages or are already taking advantage of machine learning. Nearly 90 percent of the CIOs surveyed anticipate that increasing automation will increase the speed and accuracy of decisions, and more than two-thirds believe that decisions made by machines will be more accurate than human-made decisions.

With digital transformation being a top priority on many corporate agendas, IT and customer service are partnering to bring machine learning to real world use to improve the customer experience, to reduce manual work by customer service agents and field service technicians, and to improve the quality of service.

A new report from Accenture found that front-line customer support functions spend up to 12 percent of their time categorizing, prioritizing, and assigning tickets. And 27 percent are weighed down by having to choose from 100+ assignment groups.

Machine Learning Improves Customer and Agent Experiences

Most customers today prefer to help themselves via self-service ... Machine learning simplifies this process for the customer

Most customers today prefer to help themselves via self-service including filing a case or request online. Machine learning simplifies this process for the customer by reducing the number of categories from which to choose. Additionally, because requests are being automatically assigned, response times are faster and fewer calls are required.

For agents, eliminating manual work opens the door to focusing on more strategic work such as helping customers get more out of the products or services they purchased. Assignment errors are reduced thus eliminating unnecessary escalations and shortening the time to case closure. For companies, machine learning not only reduces costs, but also improves agent engagement and satisfaction.

Removing the Hurdles Democratizes Machine Learning

One of the obstacles CIOs face in bringing machine learning into their organization is the high cost of entry. Taking full advantage of machine learning in-house requires data scientists that are costly and in short supply. Only about one in four CIOs report having the staff to properly execute their machine learning strategy. This requires a rethink of the best way to implement machine learning. How can you take advantage of this technology without hiring an army of data scientists?

The good news is that third-party providers are now able to integrate machine learning models into their applications including customer service or CRM systems. Pre-built approaches enable rapid implementation and the ability to see results in less than a day without the need to staff up.

Something as simple as fewer categories and faster case assignment can have a noticeable impact on customer engagement, agent satisfaction, and the bottom line. IT working in harmony with customer service to take advantage of machine learning opens up a new world of possibilities. The hype is high, the rewards are real, and the time is right for organizations to embrace this technology and experience the benefits for themselves.

Holly Simmons is Sr. Director, Product Marketing, Customer Service Management, ServiceNow
Share this

The Latest

August 19, 2019

One common infrastructure challenge arises with virtual private networks (VPNs). VPNs have long been relied upon to deliver the network connectivity and security enterprises required at a price they could afford. Organizations still routinely turn to them to provide internal and trusted third-parties with "secure" remote access to isolated networks. However, with the rise in mobile, IoT, multi- and hybrid-cloud, as well as edge computing, traditional enterprise perimeters are extending and becoming blurred ...

August 15, 2019

The configuration management database (CMDB), along with its more federated companion, the configuration management system (CMS), has been bathed in a deluge of negative opinions from all fronts — industry experts, vendors, and IT professionals. But from what recent EMA research on analytics, ITSM performance and other areas is indicating, those negative views seem to be missing out on a real undercurrent of truth — that CMDB/CMS alignments, whatever their defects, strongly skew to success in terms of overall IT progressiveness and effectiveness ...

August 14, 2019

The on-demand economy has transformed the way we move around, eat, learn, travel and connect at a massive scale. However, with disruption and big aspirations comes big, complex challenges. To take these challenges head-on, on-demand economy companies are finding new ways to deliver their services and products to an audience with ever-increasing expectations, and that's what we'll look at in this blog ...

August 13, 2019

To thrive in today's highly competitive digital business landscape, organizations must harness their "digital DNA." In other words, they need to connect all of their systems and databases — including various business applications, devices, big data and any instances of IoT and hybrid cloud environments — so they're accessible and actionable. By integrating all existing components and new technologies, organizations can gain a comprehensive, trusted view of their business functions, thereby enabling more agile deployment processes and ensuring scalable growth and relevance over the long-term ...

August 12, 2019

Advancements in technology innovation are happening so quickly, the decision of where and when to transform can be a moving target for businesses. When done well, digital transformation improves the customer experience while optimizing operational efficiency. To get there, enterprises must encourage experimentation to overcome organizational obstacles. In other words ...

August 08, 2019

IoT adoption is growing rapidly, and respondents believe 30% of their company’s revenue two years from now will be due to IoT, according to the new IoT Signals report from Microsoft Corp ...

August 07, 2019

It's been all over the news the last few months. After two fatal crashes, Boeing was forced to ground its 737. The doomed model is now undergoing extensive testing to get it back into service and production. Large organizations often tell stakeholders that even though all software goes through extensive testing, this type of thing “just happens.” But that is exactly the problem. While the human component of application development and testing won't go away, it can be eased and supplemented by far more efficient and automated methods to proactively determine software health and identify flaws ...

August 06, 2019

Despite significant investment in AI, many companies are still struggling to stabilize and scale their AI initiatives, according to State of Development and Operations of AI Applications 2019 from Dotscience ...

August 05, 2019

IT has two principal functions: create a network that satisfies the business needs of the company and then optimize that network. Unfortunately, the modern enterprise is buried under a myriad of network improvement projects that often do not get deployed ...

August 01, 2019

Even large companies are not yet realizing the potential of digital transformation, according to a new study from Cherwell Software, The Power of Process Integration in the Information Age ...