Sensu Releases Bonsai
May 01, 2019
Share this

Sensu announced the general availability of Bonsai, the Sensu asset index, which makes it easy to package and share monitoring solutions.

Because Bonsai is tailor-made for dynamic, ephemeral infrastructure, it can be used to distribute Sensu plugins to container environments in real time. Sensu plugins have critical functionality in all aspects of infrastructure monitoring, including service health checks, metrics and compliance. By providing a solution for frictionless sharing and an easily searchable index, Bonsai helps organizations discover and deploy integrations quickly and unlock increased productivity for operators.

“At Sensu, we believe that the greatest untapped resource in the tech industry is the tribal knowledge of operators, and we want to unlock it,” said Caleb Hailey, CEO and co-founder of Sensu. “As an industry, there’s an embarrassing, often overlooked problem: operators have been reinventing wheels for years because there hasn’t been an open platform for them to collaborate around. With Bonsai and Sensu Go, operators can share their monitoring solutions across their organization as well as with the wider community. And, as part of that community, they can benefit from solutions others have already created.”

Container technology, like Docker and Kubernetes, have fundamentally changed the way businesses build, deploy, and monitor infrastructure. According to Gartner, by 2020, more than 50 percent of companies will use container technology, up from less than 20 percent in 2017. No matter the size of the deployment, businesses still need to know how many resources are available in that environment, as well as knowing the health of the deployed applications and containers. In a dynamic environment, the need for a next-generation, multi-cloud monitoring solution is more critical than ever — modern businesses require a monitoring solution that will keep up with dynamic environments. With Bonsai, business-critical integrations are automatically downloaded when each new container comes online.

Share this

The Latest

October 17, 2019

As the data generated by organizations grows, APM tools are now required to do a lot more than basic monitoring of metrics. Modern data is often raw and unstructured and requires more advanced methods of analysis. The tools must help dig deep into this data for both forensic analysis and predictive analysis. To extract more accurate and cheaper insights, modern APM tools use Big Data techniques to store, access, and analyze the multi-dimensional data ...

October 16, 2019

Modern enterprises are generating data at an unprecedented rate but aren't taking advantage of all the data available to them in order to drive real-time, actionable insights. According to a recent study commissioned by Actian, more than half of enterprises today are unable to efficiently manage nor effectively use data to drive decision-making ...

October 15, 2019

According to a study by Forrester Research, an enhanced UX design can increase the conversion rate by 400%. If UX has become the ultimate arbiter in determining the success or failure of a product or service, let us first understand what UX is all about ...

October 10, 2019

The requirements of an APM tool are now much more complex than they've ever been. Not only do they need to trace a user transaction across numerous microservices on the same system, but they also need to happen pretty fast ...

October 09, 2019

Performance monitoring is an old problem. As technology has advanced, we've had to evolve how we monitor applications. Initially, performance monitoring largely involved sending ICMP messages to start troubleshooting a down or slow application. Applications have gotten much more complex, so this is no longer enough. Now we need to know not just whether an application is broken, but why it broke. So APM has had to evolve over the years for us to get there. But how did this evolution take place, and what happens next? Let's find out ...

October 08, 2019

There are some IT organizations that are using DevOps methodology but are wary of getting bogged down in ITSM procedures. But without at least some ITSM controls in place, organizations lose their focus on systematic customer engagement, making it harder for them to scale ...

October 07, 2019
OK, I admit it. "Service modeling" is an awkward term, especially when you're trying to frame three rather controversial acronyms in the same overall place: CMDB, CMS and DDM. Nevertheless, that's exactly what we did in EMA's most recent research: <span style="font-style: italic;">Service Modeling in the Age of Cloud and Containers</span>. The goal was to establish a more holistic context for looking at the synergies and differences across all these areas ...
October 03, 2019

If you have deployed a Java application in production, you've probably encountered a situation where the application suddenly starts to take up a large amount of CPU. When this happens, application response becomes sluggish and users begin to complain about slow response. Often the solution to this problem is to restart the application and, lo and behold, the problem goes away — only to reappear a few days later. A key question then is: how to troubleshoot high CPU usage of a Java application? ...

October 02, 2019

Operations are no longer tethered tightly to a main office, as the headquarters-centric model has been retired in favor of a more decentralized enterprise structure. Rather than focus the business around a single location, enterprises are now comprised of a web of remote offices and individuals, where network connectivity has broken down the geographic barriers that in the past limited the availability of talent and resources. Key to the success of the decentralized enterprise model is a new generation of collaboration and communication tools ...

October 01, 2019

To better understand the AI maturity of businesses, Dotscience conducted a survey of 500 industry professionals. Research findings indicate that although enterprises are dedicating significant time and resources towards their AI deployments, many data science and ML teams don't have the adequate tools needed to properly collaborate on, build and deploy AI models efficiently ...