Skipping Application Monitoring is the Biggest Anti-Pattern in Application Observability
July 19, 2021

Chris Farrell
Instana

Share this

Anti-patterns involve realizing a problem and implementing a non-optimal solution that is broadly embraced as the go-to method for solving that problem. This solution sounds good in theory, but for one reason or another it is not the best means of solving the problem.

A common example of this involves gasoline and rising prices. As prices go up, consumers tend to avoid getting gas as long as possible, until they are running on fumes. In reality, the best way to save money during this time would be to fill up your tank every chance you get.

Anti-patterns are common across IT as well, especially around application monitoring and observability. One that is particularly prevalent is in response to the increasing complexity of cloud-native infrastructure and applications. The [suboptimal] idea is that the best way to monitor modern applications is to not install monitoring, but rather have developers manually code in their own monitoring capabilities, put all the data into logs, and solve problems by analyzing custom dashboards and the resulting log files.

The reality is that this concept tends to lead to a multitude of visibility gaps, and can even send SWAT teams down the wrong path, depending on what's instrumented, collected and shown. The worst case would be application slow-downs, or even outages, occurring — all while the dashboards show "all systems green."

The problem with anti-patterns is that a popular idea can gain ground, even if the solution is suboptimal. For the afore-mentioned gasoline issue, it might take some math on a napkin to show how a different process can save money. For IT monitoring strategies, it might take a little bit more. To understand when a specific solution or process is an anti-pattern — and how to solve the problem in a more optimal way, it's important to recognize what led to the situation, the ultimate goal, and then open up to different solutions.

What Caused the Application Monitoring Anti-Pattern?

In the case of cloud-native application performance, the problem is that legacy application monitoring tools, which require continuous configuration and even some manual coding to reach their full value proposition, can lead to slow-downs in the DevOps and continuous integration / continuous deployment (CI/CD) process by requiring reconfiguration every time an update is released. There's always a chance that if the new reconfiguration isn't done (and done right), that the tool will not have the right data to either recognize a problem or solve it.

This is what has led many to eschew the idea of a monitoring tool and, instead, have their developers instrument monitoring into the code and simply analyze everything in logs themselves. Ultimately, they recognize the time consuming and menial work log analysis is, but it's seen as the lesser of two evils when compared to constant reconfiguration of monitoring.

But this isn't exactly optimal, itself. If the developers don't capture the right information at the right time, then the log analysis strategy is just as iffy as an unconfigured APM tool. Meanwhile, the only way to understand how any two pieces fit together is to bring the entire team into the analysis phase, which probably means even bigger bridge calls than with just the APM swat team approach.

Finding A Better Solution

As with any anti-pattern, including our real-world example above, the way to find an optimal solution is to start with the goal and make sure you're working towards that goal. In the gasoline example, people generally equate less frequent purchases as spending less, but if they instead focus on the actual cost itself, they can recognize an alternative that better achieves their goal of minimizing costs.

The same is true in application monitoring. The goal is to get the most immediate feedback on any software update, to proactively understand when a problem is occurring and easily, and quickly, solve the problem.

IT teams know that they want:

■ Monitoring up and down the cloud-native stack

■ Understanding within monitoring when changes occur

■ Access to data (and understanding) from a broader set of stakeholders

Certainly, the idea of developers coding, monitoring, and tracing, coupled with direct log analysis by every stakeholder, meets the above — but does it truly achieve the ultimate goals of Dev+Ops when it comes to operating their applications?

Let's tackle the problems and misconceptions of this observability anti-pattern:

Configuring monitoring is hard — no one wants to spend the time or investment needed to even get going with a monitoring tool.

We agree, it can be hard. But there are monitoring and observability solutions that automate the hard part (we promise, they exist). You shouldn't avoid the idea of monitoring because of the traditional hurdles involved in setting this up.

We can provide data for everyone to use! No observability tool needed. What does providing a firehose of all data to all users create? A lot of time wasting, inefficiency, and non-focused analysis.

The problem here is: If you provide all the data to a user, it will take forever to sort through what is relevant to them. Or, if you provide only the specific data related to the application they care about for example, they won't have the context needed to fully understand the situation.

What if an issue isn't the application itself, but a specific user?

What if there were previous outages for this application?

Monitoring solutions, after being implemented, can provide data with accurate context, automatically, so you can view your applications in the scope of everything else going on.

How can a monitoring / observability solution enable intelligent decision-making? How do we make it so the right people get the right data and make the best decisions they can?

These are the questions to be asking and the real challenges to solve for. A modern monitoring solution can help answer these questions when they offer:
- Real-time automation
- Automation of configuration
- Data within context
- A machine learning engine that improves and delivers data to all other AIOps platforms too

Legacy monitoring solutions have led organizations astray, thinking they can save time, effort, and cost by not implementing APM into cloud-native architectures. But modern monitoring solutions were designed for these modern environments and are the actual best way in which organizations can save time, effort and money, while empowering the entire IT team.

Chris Farrell is Observability and APM Strategist at Instana
Share this

The Latest

October 21, 2021

Scaling DevOps and SRE practices is critical to accelerating the release of high-quality digital services. However, siloed teams, manual approaches, and increasingly complex tooling slow innovation and make teams more reactive than proactive, impeding their ability to drive value for the business, according to a new report from Dynatrace, Deep Cloud Observability and Advanced AIOps are Key to Scaling DevOps Practices ...

October 20, 2021

Over three quarters (79%) of database professionals are now using either a paid-for or in-house monitoring tool, according to a new survey from Redgate Software ...

October 19, 2021

Gartner announced the top strategic technology trends that organizations need to explore in 2022. With CEOs and Boards striving to find growth through direct digital connections with customers, CIOs' priorities must reflect the same business imperatives, which run through each of Gartner's top strategic tech trends for 2022 ...

October 18, 2021

Distributed tracing has been growing in popularity as a primary tool for investigating performance issues in microservices systems. Our recent DevOps Pulse survey shows a 38% increase year-over-year in organizations' tracing use. Furthermore, 64% of those respondents who are not yet using tracing indicated plans to adopt it in the next two years ...

October 14, 2021

Businesses are embracing artificial intelligence (AI) technologies to improve network performance and security, according to a new State of AIOps Study, conducted by ZK Research and Masergy ...

October 13, 2021

What may have appeared to be a stopgap solution in the spring of 2020 is now clearly our new workplace reality: It's impossible to walk back so many of the developments in workflow we've seen since then. The question is no longer when we'll all get back to the office, but how the companies that are lagging in their technological ability to facilitate remote work can catch up ...

October 12, 2021

The pandemic accelerated organizations' journey to the cloud to enable agile, on-demand, flexible access to resources, helping them align with a digital business's dynamic needs. We heard from many of our customers at the start of lockdown last year, saying they had to shift to a remote work environment, seemingly overnight, and this effort was heavily cloud-reliant. However, blindly forging ahead can backfire ...

October 07, 2021

SmartBear recently released the results of its 2021 State of Software Quality | Testing survey. I doubt you'll be surprised to hear that a "lack of time" was reported as the number one challenge to doing more testing, especially as release frequencies continue to increase. However, it was disheartening to see that a lack of time was also the number one response when we asked people to identify the biggest blocker to professional development ...

October 06, 2021

The role of the CIO is evolving with an increased focus on unlocking customer connections through service innovation, according to the 2021 Global CIO Survey. The study reveals the shift in the role of the CIO with the majority of CIO respondents stating innovation, operational efficiency, and customer experience as their top priorities ...

October 05, 2021

The perception of IT support has dramatically improved thanks to the successful response of service desks to the pandemic, lockdowns and working from home, according to new research from the Service Desk Institute (SDI), sponsored by Sunrise Software ...