
Splunk announced Splunk AI, a collection of new AI-powered offerings to enhance its unified security and observability platform.
Splunk AI combines automation with human-in-the-loop experiences, so organizations can drive faster detection, investigation and response while controlling how AI is applied to their data. Leaning into its lineage of data visibility and years of innovation in AI and machine learning (ML), Splunk continues to enrich the customer experience by delivering domain-specific insights through its AI capabilities for security and observability.
Splunk AI strengthens human decision-making and threat response through assistive experiences. The offerings empower SecOps, ITOps and engineering teams to automatically mine data, detect anomalies and prioritize critical decisions through intelligent assessment of risk, helping to minimize repetitive processes and human error. Splunk AI optimizes domain-specific large language models (LLMs) and ML algorithms built on security and observability data, so SecOps, ITOps and engineering teams are freed up for more strategic work - helping to accelerate productivity and lower costs. Looking forward, Splunk is committed to remaining open and extensible as it integrates AI into its platform, so organizations can extend Splunk AI models or use home-grown and third party tools.
“Splunk’s purpose is to build a safer, more resilient digital world, and this includes the transparent usage of AI,” said Min Wang, CTO at Splunk. “Looking forward, we believe AI and ML will bring enormous value to security and observability by empowering organizations to automatically detect anomalies and focus their attention where it’s needed most. Our Splunk Al innovations provide domain-specific security and observability insights to accelerate detection, investigation and response while ensuring customers remain in control of how AI uses their data.”
Splunk AI Assistant leverages generative AI to provide an interactive chat experience and helps users author Splunk Processing Language (SPL) using natural language. The app preview fosters an immersive experience where users can ask the AI chatbot to write or explain customized SPL queries to increase their Splunk knowledge. Splunk AI Assistant improves time-to-value and helps make SPL more accessible, further democratizing an organization’s access to, and insights from, its data.
The embedded AI offerings, highlighted below, enable organizations to drive more accurate alerting to build digital resilience:
■ With a few clicks, Splunk App for Anomaly Detection provides SecOps, ITOps and engineering teams with a streamlined end-to-end operational workflow to simplify and automate anomaly detection within their environment.
■ The IT Service Intelligence 4.17 features greater detection accuracy and faster time-to-value:
- Outlier Exclusion for Adaptive Thresholding detects and omits abnormal data points or outliers (such as network disruptions or outage spikes) for more precise dynamic thresholds to drive accurate detection within one’s technology environment.
- The new ML-Assisted Thresholding preview uses historical data and patterns to create dynamic thresholds with just one click, helping to provide more accurate alerting on the health of an organization's technology environment.
The ML-powered foundational offerings provide organizations access to large, richer sets of information by extending solutions built on the Splunk platform, so they can drive data-driven decisions:
■ The Splunk Machine Learning Toolkit (MLTK) 5.4 provides guided access to ML technology to users of all levels and is one of the most downloaded Splunkbase apps, with over 200k downloads. Through leveraging techniques like forecasting and predictive analytics, SecOps, ITOps and engineering teams can unlock richer ML-powered insights. The new release builds on the open, extensible nature of Splunk AI by enabling customers to bring their externally trained models into Splunk.
■ Now available on Splunkbase, Splunk App for Data Science and Deep Learning (DSDL) 5.1 extends MLTK to provide access to additional data science tools to integrate advanced custom machine learning and deep learning systems with Splunk. This release includes two AI assistants that allow customers to leverage LLMs to build and train models with their domain specific data to support natural language processing.
All new offerings within Splunk AI are now generally available, with the exception of Splunk AI Assistant and ML-Assisted Thresholding which are available in preview.
The Latest
Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...
IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...
Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ...
In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...
In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...
In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...
In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...
Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...