SREs Need Faster, More Unified Data Investigation
January 02, 2024

Gagan Singh
Elastic

Share this

No one ever said Site Reliability Engineers (SREs) have it easy. SREs have to deal with ever-increasing amounts of data that is increasingly complex to discover and analyze. Heaps of metrics, logs, traces, and profiling data are also siloed, leading to a fragmented and opaque monitoring toolset to navigate operational efficiency and problem resolution.

Additionally, SREs have the unprecedented pressure to resolve site uptime/availability and performance issues and deliver data-driven insights that get to the root cause of those issues, which ensure mission-critical applications and workloads run smoothly and without interruption.

This increase in data scale and complexity drives the need for greater productivity and efficiency among SREs but also developers, security professionals, and observability practitioners so they can find the answers and insights faster while collaborating seamlessly.

In this environment, SREs need faster, more unified data investigation. An observability solution that provides not only unified data but also contextual-based analysis is a crucial tool for SREs to keep pace with the growing observability challenges, resolve site issues more quickly and easily, and deliver value to the organization by preventing disruptions to "business as usual" that can negatively impact daily operations and end-user experiences.

Decoding a Deluge of Data

To prevent and remediate system downtime and other related issues, SREs monitor thousands of systems that generate important trace, log, and metric data. This data is then used to identify problems and implement measures to prevent system or application interruptions in the future.

However, observability-ingested data can be complex and unpredictable as the number of nodes to monitor changes frequently. To date, it's been a challenge to perform data aggregation and analysis across various data sources from a single query. This is a problem because the ability to analyze system behavior with a combined understanding of multiple data sets is essential for an SRE. They need the ability to correlate and reshape data to unearth deeper insights into system and application behavior and perform post-hoc analysis after an issue is identified.

One way to meet the increasingly complex needs of SREs with speed and efficiency is via new AI-powered capabilities and natural language interfaces that enable concurrent processing irrespective of data source and structure.

Turning the Page on Old Ways of Data Investigation

What will this new world of faster, more unified data investigation look like?

For starters, we'll see reduced time to resolution as this will enhance detection accuracy in several important ways.

Secondly, it allows engineers to identify trends, isolate incidents, and reduce false positives. This richer context assists with troubleshooting and helps quickly pinpoint root causes and resolve issues.

Finally, we'll see leaps ahead for operational efficiency. From a single query, SREs will be able to create more actionable notifications, create visualizations or dashboards, or pinpoint performance bottlenecks and the root cause of system issues.

Concurrent processing will enable enhanced analysis with stronger insights. Operations engineers will be able to get their hands around a diverse array of observability data — not just application and infrastructure data, but also business data — regardless of what source it comes from or structure it takes.

In observability, context is everything. A world of faster, more unified data investigation would provide the ability to easily enrich data with additional context. With this context fed in, engineers can personalize and create an uninterrupted, intelligent, and efficient workflow for data inquiries.

With this type of functionality in place, SREs will redefine how they interact with data, which will democratize access to newfound data insights and transform the foundations of their decision-making.

It's time for SREs to turn the page on the data investigation approaches of the past. A world of faster, more unified data investigation awaits.

Gagan Singh is VP, Product Marketing, at Elastic
Share this

The Latest

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...

February 15, 2024

In a time where we're constantly bombarded with new buzzwords and technological advancements, it can be challenging for businesses to determine what is real, what is useful, and what they truly need. Over the years, we've witnessed the rise and fall of various tech trends, such as the promises (and fears) of AI becoming sentient and replacing humans to the declaration that data is the new oil. At the end of the day, one fundamental question remains: How can companies navigate through the tech buzz and make informed decisions for their future? ...

February 14, 2024

We increasingly see companies using their observability data to support security use cases. It's not entirely surprising given the challenges that organizations have with legacy SIEMs. We wanted to dig into this evolving intersection of security and observability, so we surveyed 500 security professionals — 40% of whom were either CISOs or CSOs — for our inaugural State of Security Observability report ...

February 13, 2024

Cloud computing continues to soar, with little signs of slowing down ... But, as with any new program, companies are seeing substantial benefits in the cloud but are also navigating budgetary challenges. With an estimated 94% of companies using cloud services today, priorities for IT teams have shifted from purely adoption-based to deploying new strategies. As they explore new territories, it can be a struggle to exploit the full value of their spend and the cloud's transformative capabilities ...

February 12, 2024

What will the enterprise of the future look like? If we asked this question three years ago, I doubt most of us would have pictured today as we know it: a future where generative AI has become deeply integrated into business and even our daily lives ...

February 09, 2024

With a focus on GenAI, industry experts offer predictions on how AI will evolve and impact IT and business in 2024. Part 5, the final installment in this series, covers the advantages AI will deliver: Generative AI will become increasingly important for resolving complicated data integration challenges, essentially providing a natural-language intermediary between data endpoints ...

February 08, 2024

With a focus on GenAI, industry experts offer predictions on how AI will evolve and impact IT and business in 2024. Part 4 covers the challenges of AI: In the short term, the rapid development and adoption of AI tools and products leveraging AI services will lead to an increase in biased outputs ...

February 07, 2024

With a focus on GenAI, industry experts offer predictions on how AI will evolve and impact IT and business in 2024. Part 3 covers the technologies that will drive AI: The question on every leader's mind in 2023 was - how soon will I see the return on my AI investment? The answer may lie in quantum computing ...