Skip to main content

SREs Need Faster, More Unified Data Investigation

Gagan Singh
Elastic

No one ever said Site Reliability Engineers (SREs) have it easy. SREs have to deal with ever-increasing amounts of data that is increasingly complex to discover and analyze. Heaps of metrics, logs, traces, and profiling data are also siloed, leading to a fragmented and opaque monitoring toolset to navigate operational efficiency and problem resolution.

Additionally, SREs have the unprecedented pressure to resolve site uptime/availability and performance issues and deliver data-driven insights that get to the root cause of those issues, which ensure mission-critical applications and workloads run smoothly and without interruption.

This increase in data scale and complexity drives the need for greater productivity and efficiency among SREs but also developers, security professionals, and observability practitioners so they can find the answers and insights faster while collaborating seamlessly.

In this environment, SREs need faster, more unified data investigation. An observability solution that provides not only unified data but also contextual-based analysis is a crucial tool for SREs to keep pace with the growing observability challenges, resolve site issues more quickly and easily, and deliver value to the organization by preventing disruptions to "business as usual" that can negatively impact daily operations and end-user experiences.

Decoding a Deluge of Data

To prevent and remediate system downtime and other related issues, SREs monitor thousands of systems that generate important trace, log, and metric data. This data is then used to identify problems and implement measures to prevent system or application interruptions in the future.

However, observability-ingested data can be complex and unpredictable as the number of nodes to monitor changes frequently. To date, it's been a challenge to perform data aggregation and analysis across various data sources from a single query. This is a problem because the ability to analyze system behavior with a combined understanding of multiple data sets is essential for an SRE. They need the ability to correlate and reshape data to unearth deeper insights into system and application behavior and perform post-hoc analysis after an issue is identified.

One way to meet the increasingly complex needs of SREs with speed and efficiency is via new AI-powered capabilities and natural language interfaces that enable concurrent processing irrespective of data source and structure.

Turning the Page on Old Ways of Data Investigation

What will this new world of faster, more unified data investigation look like?

For starters, we'll see reduced time to resolution as this will enhance detection accuracy in several important ways.

Secondly, it allows engineers to identify trends, isolate incidents, and reduce false positives. This richer context assists with troubleshooting and helps quickly pinpoint root causes and resolve issues.

Finally, we'll see leaps ahead for operational efficiency. From a single query, SREs will be able to create more actionable notifications, create visualizations or dashboards, or pinpoint performance bottlenecks and the root cause of system issues.

Concurrent processing will enable enhanced analysis with stronger insights. Operations engineers will be able to get their hands around a diverse array of observability data — not just application and infrastructure data, but also business data — regardless of what source it comes from or structure it takes.

In observability, context is everything. A world of faster, more unified data investigation would provide the ability to easily enrich data with additional context. With this context fed in, engineers can personalize and create an uninterrupted, intelligent, and efficient workflow for data inquiries.

With this type of functionality in place, SREs will redefine how they interact with data, which will democratize access to newfound data insights and transform the foundations of their decision-making.

It's time for SREs to turn the page on the data investigation approaches of the past. A world of faster, more unified data investigation awaits.

Gagan Singh is VP, Product Marketing, at Elastic

Hot Topics

The Latest

Cloud adoption has accelerated, but backup strategies haven't always kept pace. Many organizations continue to rely on backup strategies that were either lifted directly from on-prem environments or use cloud-native tools in limited, DR-focused ways ... Eon uncovered a handful of critical gaps regarding how organizations approach cloud backup. To capture these prevailing winds, we gathered insights from 150+ IT and cloud leaders at the recent Google Cloud Next conference, which we've compiled into the 2025 State of Cloud Data Backup ...

Private clouds are no longer playing catch-up, and public clouds are no longer the default as organizations recalibrate their cloud strategies, according to the Private Cloud Outlook 2025 report from Broadcom. More than half (53%) of survey respondents say private cloud is their top priority for deploying new workloads over the next three years, while 69% are considering workload repatriation from public to private cloud, with one-third having already done so ...

As organizations chase productivity gains from generative AI, teams are overwhelmingly focused on improving delivery speed (45%) over enhancing software quality (13%), according to the Quality Transformation Report from Tricentis ...

Back in March of this year ... MongoDB's stock price took a serious tumble ... In my opinion, it reflects a deeper structural issue in enterprise software economics altogether — vendor lock-in ...

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...

Traditional observability requires users to leap across different platforms or tools for metrics, logs, or traces and related issues manually, which is very time-consuming, so as to reasonably ascertain the root cause. Observability 2.0 fixes this by unifying all telemetry data, logs, metrics, and traces into a single, context-rich pipeline that flows into one smart platform. But this is far from just having a bunch of additional data; this data is actionable, predictive, and tied to revenue realization ...

64% of enterprise networking teams use internally developed software or scripts for network automation, but 61% of those teams spend six or more hours per week debugging and maintaining them, according to From Scripts to Platforms: Why Homegrown Tools Dominate Network Automation and How Vendors Can Help, my latest EMA report ...

Cloud computing has transformed how we build and scale software, but it has also quietly introduced one of the most persistent challenges in modern IT: cost visibility and control ... So why, after more than a decade of cloud adoption, are cloud costs still spiraling out of control? The answer lies not in tooling but in culture ...

CEOs are committed to advancing AI solutions across their organization even as they face challenges from accelerating technology adoption, according to the IBM CEO Study. The survey revealed that executive respondents expect the growth rate of AI investments to more than double in the next two years, and 61% confirm they are actively adopting AI agents today and preparing to implement them at scale ...

Image
IBM

 

SREs Need Faster, More Unified Data Investigation

Gagan Singh
Elastic

No one ever said Site Reliability Engineers (SREs) have it easy. SREs have to deal with ever-increasing amounts of data that is increasingly complex to discover and analyze. Heaps of metrics, logs, traces, and profiling data are also siloed, leading to a fragmented and opaque monitoring toolset to navigate operational efficiency and problem resolution.

Additionally, SREs have the unprecedented pressure to resolve site uptime/availability and performance issues and deliver data-driven insights that get to the root cause of those issues, which ensure mission-critical applications and workloads run smoothly and without interruption.

This increase in data scale and complexity drives the need for greater productivity and efficiency among SREs but also developers, security professionals, and observability practitioners so they can find the answers and insights faster while collaborating seamlessly.

In this environment, SREs need faster, more unified data investigation. An observability solution that provides not only unified data but also contextual-based analysis is a crucial tool for SREs to keep pace with the growing observability challenges, resolve site issues more quickly and easily, and deliver value to the organization by preventing disruptions to "business as usual" that can negatively impact daily operations and end-user experiences.

Decoding a Deluge of Data

To prevent and remediate system downtime and other related issues, SREs monitor thousands of systems that generate important trace, log, and metric data. This data is then used to identify problems and implement measures to prevent system or application interruptions in the future.

However, observability-ingested data can be complex and unpredictable as the number of nodes to monitor changes frequently. To date, it's been a challenge to perform data aggregation and analysis across various data sources from a single query. This is a problem because the ability to analyze system behavior with a combined understanding of multiple data sets is essential for an SRE. They need the ability to correlate and reshape data to unearth deeper insights into system and application behavior and perform post-hoc analysis after an issue is identified.

One way to meet the increasingly complex needs of SREs with speed and efficiency is via new AI-powered capabilities and natural language interfaces that enable concurrent processing irrespective of data source and structure.

Turning the Page on Old Ways of Data Investigation

What will this new world of faster, more unified data investigation look like?

For starters, we'll see reduced time to resolution as this will enhance detection accuracy in several important ways.

Secondly, it allows engineers to identify trends, isolate incidents, and reduce false positives. This richer context assists with troubleshooting and helps quickly pinpoint root causes and resolve issues.

Finally, we'll see leaps ahead for operational efficiency. From a single query, SREs will be able to create more actionable notifications, create visualizations or dashboards, or pinpoint performance bottlenecks and the root cause of system issues.

Concurrent processing will enable enhanced analysis with stronger insights. Operations engineers will be able to get their hands around a diverse array of observability data — not just application and infrastructure data, but also business data — regardless of what source it comes from or structure it takes.

In observability, context is everything. A world of faster, more unified data investigation would provide the ability to easily enrich data with additional context. With this context fed in, engineers can personalize and create an uninterrupted, intelligent, and efficient workflow for data inquiries.

With this type of functionality in place, SREs will redefine how they interact with data, which will democratize access to newfound data insights and transform the foundations of their decision-making.

It's time for SREs to turn the page on the data investigation approaches of the past. A world of faster, more unified data investigation awaits.

Gagan Singh is VP, Product Marketing, at Elastic

Hot Topics

The Latest

Cloud adoption has accelerated, but backup strategies haven't always kept pace. Many organizations continue to rely on backup strategies that were either lifted directly from on-prem environments or use cloud-native tools in limited, DR-focused ways ... Eon uncovered a handful of critical gaps regarding how organizations approach cloud backup. To capture these prevailing winds, we gathered insights from 150+ IT and cloud leaders at the recent Google Cloud Next conference, which we've compiled into the 2025 State of Cloud Data Backup ...

Private clouds are no longer playing catch-up, and public clouds are no longer the default as organizations recalibrate their cloud strategies, according to the Private Cloud Outlook 2025 report from Broadcom. More than half (53%) of survey respondents say private cloud is their top priority for deploying new workloads over the next three years, while 69% are considering workload repatriation from public to private cloud, with one-third having already done so ...

As organizations chase productivity gains from generative AI, teams are overwhelmingly focused on improving delivery speed (45%) over enhancing software quality (13%), according to the Quality Transformation Report from Tricentis ...

Back in March of this year ... MongoDB's stock price took a serious tumble ... In my opinion, it reflects a deeper structural issue in enterprise software economics altogether — vendor lock-in ...

In MEAN TIME TO INSIGHT Episode 15, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses Do-It-Yourself Network Automation ... 

Zero-day vulnerabilities — security flaws that are exploited before developers even know they exist — pose one of the greatest risks to modern organizations. Recently, such vulnerabilities have been discovered in well-known VPN systems like Ivanti and Fortinet, highlighting just how outdated these legacy technologies have become in defending against fast-evolving cyber threats ... To protect digital assets and remote workers in today's environment, companies need more than patchwork solutions. They need architecture that is secure by design ...

Traditional observability requires users to leap across different platforms or tools for metrics, logs, or traces and related issues manually, which is very time-consuming, so as to reasonably ascertain the root cause. Observability 2.0 fixes this by unifying all telemetry data, logs, metrics, and traces into a single, context-rich pipeline that flows into one smart platform. But this is far from just having a bunch of additional data; this data is actionable, predictive, and tied to revenue realization ...

64% of enterprise networking teams use internally developed software or scripts for network automation, but 61% of those teams spend six or more hours per week debugging and maintaining them, according to From Scripts to Platforms: Why Homegrown Tools Dominate Network Automation and How Vendors Can Help, my latest EMA report ...

Cloud computing has transformed how we build and scale software, but it has also quietly introduced one of the most persistent challenges in modern IT: cost visibility and control ... So why, after more than a decade of cloud adoption, are cloud costs still spiraling out of control? The answer lies not in tooling but in culture ...

CEOs are committed to advancing AI solutions across their organization even as they face challenges from accelerating technology adoption, according to the IBM CEO Study. The survey revealed that executive respondents expect the growth rate of AI investments to more than double in the next two years, and 61% confirm they are actively adopting AI agents today and preparing to implement them at scale ...

Image
IBM