Skip to main content

Cloud-Native Technologies Produce Explosion of Data Beyond Human Ability to Manage

Organizations are continuing to embrace multicloud environments and cloud-native architectures to enable rapid transformation and deliver secure innovation. However, despite the speed, scale, and agility enabled by these modern cloud ecosystems, organizations are struggling to manage the explosion of data they create, according to The state of observability 2024: Overcoming complexity through AI-driven analytics and automation strategies, a report from Dynatrace.


Source: Dynatrace

These research findings underscore the need for a mature AI, analytics, and automation strategy that moves beyond traditional AIOps models to drive lasting business value.

Findings from the research include:

■ 88% of organizations say the complexity of their technology stack has increased in the past 12 months, and 51% say it will continue to increase.

■ The average multicloud environment spans 12 different platforms and services.

■ 87% of technology leaders say multicloud complexity makes it more difficult to deliver outstanding customer experiences, and 84% say it makes applications more difficult to protect.

■ 86% of technology leaders say cloud-native technology stacks produce an explosion of data that is beyond humans’ ability to manage.

■ On average, organizations use 10 different monitoring and observability tools to manage applications, infrastructure, and user experience.

■ 85% of technology leaders say the number of tools, platforms, dashboards, and applications they rely on adds to the complexity of managing a multicloud environment.

"Cloud-native architectures have become mandatory for modern organizations, bringing the speed, scale, and agility they need to deliver innovation," said Bernd Greifeneder, CTO at Dynatrace. "These architectures reflect a growing array of cloud platforms and services to support even the simplest digital transaction. The huge amount of data they produce makes it increasingly difficult to monitor and secure applications. As a result, critical business outcomes like customer experience are suffering, and it is becoming more difficult to protect against advanced cyber threats."

Additional findings include:

■ 81% of technology leaders say manual approaches to log management and analytics cannot keep up with the rate of change in their technology stack and the volumes of data it produces.

■ 81% of technology leaders say the time their teams spend maintaining monitoring tools and preparing data for analysis steals time from innovation.

■ 72% of organizations have adopted AIOps to reduce the complexity of managing their multicloud environment.

■ 97% of technology leaders say probabilistic machine learning approaches have limited the value AIOps delivers due to the manual effort needed to gain reliable insights.

"Without the ability to transform the high volumes of diverse data from cloud-native architectures into real-time, contextually relevant insights, IT, development, security, and business teams struggle to understand what is happening in their environment and lack the answers needed to solve issues quickly and decisively," continued Greifeneder. "While many organizations turn to AIOps, they often encounter limited value due to reliance on probabilistic methods, which can be imprecise and time-consuming to implement. To overcome the complexity of modern technology stacks, organizations require advanced AI, analytics, and automation capabilities. By unifying diverse data, retaining its context, and powering analytics and automation with a hypermodal AI that combines multiple techniques, including causal, predictive, and generative AI, teams can unlock a wealth of insights from their data to drive smarter decision-making, intelligent automation, and more efficient ways of working."

Methodology: This report is based on a global survey conducted by Coleman Parkes and commissioned by Dynatrace of 1,300 CIOs, CTOs, and other senior technology leaders involved in IT operations and DevOps management in large enterprises with more than 1,000 employees. The sample included 200 respondents in the U.S., 100 in Latin America, 600 in Europe, 150 in the Middle East, and 250 in Asia Pacific.

The Latest

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...

Cloud-Native Technologies Produce Explosion of Data Beyond Human Ability to Manage

Organizations are continuing to embrace multicloud environments and cloud-native architectures to enable rapid transformation and deliver secure innovation. However, despite the speed, scale, and agility enabled by these modern cloud ecosystems, organizations are struggling to manage the explosion of data they create, according to The state of observability 2024: Overcoming complexity through AI-driven analytics and automation strategies, a report from Dynatrace.


Source: Dynatrace

These research findings underscore the need for a mature AI, analytics, and automation strategy that moves beyond traditional AIOps models to drive lasting business value.

Findings from the research include:

■ 88% of organizations say the complexity of their technology stack has increased in the past 12 months, and 51% say it will continue to increase.

■ The average multicloud environment spans 12 different platforms and services.

■ 87% of technology leaders say multicloud complexity makes it more difficult to deliver outstanding customer experiences, and 84% say it makes applications more difficult to protect.

■ 86% of technology leaders say cloud-native technology stacks produce an explosion of data that is beyond humans’ ability to manage.

■ On average, organizations use 10 different monitoring and observability tools to manage applications, infrastructure, and user experience.

■ 85% of technology leaders say the number of tools, platforms, dashboards, and applications they rely on adds to the complexity of managing a multicloud environment.

"Cloud-native architectures have become mandatory for modern organizations, bringing the speed, scale, and agility they need to deliver innovation," said Bernd Greifeneder, CTO at Dynatrace. "These architectures reflect a growing array of cloud platforms and services to support even the simplest digital transaction. The huge amount of data they produce makes it increasingly difficult to monitor and secure applications. As a result, critical business outcomes like customer experience are suffering, and it is becoming more difficult to protect against advanced cyber threats."

Additional findings include:

■ 81% of technology leaders say manual approaches to log management and analytics cannot keep up with the rate of change in their technology stack and the volumes of data it produces.

■ 81% of technology leaders say the time their teams spend maintaining monitoring tools and preparing data for analysis steals time from innovation.

■ 72% of organizations have adopted AIOps to reduce the complexity of managing their multicloud environment.

■ 97% of technology leaders say probabilistic machine learning approaches have limited the value AIOps delivers due to the manual effort needed to gain reliable insights.

"Without the ability to transform the high volumes of diverse data from cloud-native architectures into real-time, contextually relevant insights, IT, development, security, and business teams struggle to understand what is happening in their environment and lack the answers needed to solve issues quickly and decisively," continued Greifeneder. "While many organizations turn to AIOps, they often encounter limited value due to reliance on probabilistic methods, which can be imprecise and time-consuming to implement. To overcome the complexity of modern technology stacks, organizations require advanced AI, analytics, and automation capabilities. By unifying diverse data, retaining its context, and powering analytics and automation with a hypermodal AI that combines multiple techniques, including causal, predictive, and generative AI, teams can unlock a wealth of insights from their data to drive smarter decision-making, intelligent automation, and more efficient ways of working."

Methodology: This report is based on a global survey conducted by Coleman Parkes and commissioned by Dynatrace of 1,300 CIOs, CTOs, and other senior technology leaders involved in IT operations and DevOps management in large enterprises with more than 1,000 employees. The sample included 200 respondents in the U.S., 100 in Latin America, 600 in Europe, 150 in the Middle East, and 250 in Asia Pacific.

The Latest

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

Today, organizations are generating and processing more data than ever before. From training AI models to running complex analytics, massive datasets have become the backbone of innovation. However, as businesses embrace the cloud for its scalability and flexibility, a new challenge arises: managing the soaring costs of storing and processing this data ...