Skip to main content

The Status of Enterprise AI: AI Hype to Reality

Mike Marks
Riverbed

Organizations are gearing up to let the AI rubber hit the road in business initiatives, having spent the past several years implementing AI models mostly to improve IT and operations.

According to a recent survey, organizations see AI as critically important to their futures, with 94% of respondents saying that AI was a top priority of C-suite executives, and 64% of decision-makers saying they plan to use AI to drive growth initiatives and new business models over the next three years. Decision-makers acknowledge, however, that work is needed in order to take full advantage of AI's transformative capabilities. Only 37% said they are fully prepared to implement AI projects right now, but 86% said they expect to be ready by 2027 — presenting a mismatch of AI expectations versus reality.

Image
Riverbed

For IT leaders, a few hurdles stand in the way of AI success. They include concerns over data quality, security and the ability to implement projects. Understanding and addressing these concerns can give organizations a realistic view of where they stand in implementing AI — and balance out a certain level of overconfidence many organizations seem to have — to enable them to make the most of the technology's potential.

Data Quality a Top Concern

Perhaps the biggest concern is over the quality of data. Leaders understand that high-quality data is essential to training AI models and ensuring efficient performance — 85% said so — but most acknowledge that their own data is currently lacking in completeness and accuracy. Only 43% described their data as excellent for quantity and completeness, and 40% rated the accuracy and integrity of their data as excellent. Overall, 69% questioned the effectiveness of using their organization's data for AI.

Without improvements, data quality could become a major stumbling block, as 42% of decision-makers said that a lack of high-quality internal data for training AI models would prevent them from investing more in the technology.

Security-related issues also could deter further AI investments, with 43% citing cybersecurity risks and 36% identifying regulatory and compliance concerns as potential reasons to hold back. More than three-quarters of respondents (76%) are concerned that their use of AI could result in AI accessing their proprietary data in the public domain.

These factors play into questions about the ability to implement AI projects, which has sometimes been a struggle for some organizations. Implementation challenges are evident in the disparity between organizations' confidence in their AI abilities and the results of projects they've completed. Although 82% of decision-makers say their organizations are either significantly or slightly ahead of the competition in implementing AI, only 18% outperformed expectations while 23% underperformed and 59% met expectations.

Observability and Improved DEX Help Overcome AI Challenges

It's clear that organizations are focused on AI because of its potential to deliver substantial competitive advantages. And the research shows that high-performing companies, or growth companies, are those giving AI higher priority than moderate or low performers.

In moving forward, there are several interrelated factors organizations can focus on to help AI's potential become a reality.

Prioritize Observability. When it comes to improving IT and digital services, decision-makers emphasize the importance of observability, which collects and analyzes full-system telemetry to measure the health of a system, detect issues, identify dependencies and improve performance. Observability has been shown to have a significant impact on improving data quality — a top concern with moving forward on AI. 84% of respondents said they want an AI observability platform as opposed to implementing point products.

Tap Into the Successes of High-Performers. Research has also found a clear connection between those who made the most use of AI and those who performed the best. These "high performers" are those organizations with an average change in revenue of 10.5% or more, and they happen to be leveraging AI to its absolute full capabilities (67%) when compared to low performers (45%). Organizations looking to implement AI successfully, like high performers, should be prioritizing similar strategies to ensure performance of models and data. Confidence in data is significantly higher in the top performers when compared to the low performers (53% vs. 28%).

Focus on Improving the Digital Experience. Across all respondents, the survey showed that decision-makers were deploying different AI capabilities to improve digital user experience. 85% said AI-driven analytics improve user experience, while 86% said AI automation is important to improve IT efficiency and deliver an improved digital experience for end users.

Cultivate Young Employees. Millennial and Generation Z employees, who will comprise 74% of the workforce by 2030, are by far the most attuned to AI, with 52% of Gen Z and 39% of millennials having a favorable view of AI, as opposed to Generation X (8%) and baby boomers (1%). They also are the most insistent on good DEX. A Riverbed survey last year found that 68% of decision-makers said poor DEX would drive younger employees to leave the company, putting a company's AI strategy front and center for business growth too.

Conclusion

Organizations are moving in a positive direction, with 92% having formed a department or team to address some combination of AI, user experience and observability, with 57% dedicating an internal team or department to AI and 45% targeting DEX and/or observability.

Using observability to improve data quality and system reliability, building on the work of high-performing, AI-conversant employees and focusing on improving the digital end user experience can go a long way toward setting organizations up for AI success.

Mike Marks is VP of Product Marketing at Riverbed

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

The Status of Enterprise AI: AI Hype to Reality

Mike Marks
Riverbed

Organizations are gearing up to let the AI rubber hit the road in business initiatives, having spent the past several years implementing AI models mostly to improve IT and operations.

According to a recent survey, organizations see AI as critically important to their futures, with 94% of respondents saying that AI was a top priority of C-suite executives, and 64% of decision-makers saying they plan to use AI to drive growth initiatives and new business models over the next three years. Decision-makers acknowledge, however, that work is needed in order to take full advantage of AI's transformative capabilities. Only 37% said they are fully prepared to implement AI projects right now, but 86% said they expect to be ready by 2027 — presenting a mismatch of AI expectations versus reality.

Image
Riverbed

For IT leaders, a few hurdles stand in the way of AI success. They include concerns over data quality, security and the ability to implement projects. Understanding and addressing these concerns can give organizations a realistic view of where they stand in implementing AI — and balance out a certain level of overconfidence many organizations seem to have — to enable them to make the most of the technology's potential.

Data Quality a Top Concern

Perhaps the biggest concern is over the quality of data. Leaders understand that high-quality data is essential to training AI models and ensuring efficient performance — 85% said so — but most acknowledge that their own data is currently lacking in completeness and accuracy. Only 43% described their data as excellent for quantity and completeness, and 40% rated the accuracy and integrity of their data as excellent. Overall, 69% questioned the effectiveness of using their organization's data for AI.

Without improvements, data quality could become a major stumbling block, as 42% of decision-makers said that a lack of high-quality internal data for training AI models would prevent them from investing more in the technology.

Security-related issues also could deter further AI investments, with 43% citing cybersecurity risks and 36% identifying regulatory and compliance concerns as potential reasons to hold back. More than three-quarters of respondents (76%) are concerned that their use of AI could result in AI accessing their proprietary data in the public domain.

These factors play into questions about the ability to implement AI projects, which has sometimes been a struggle for some organizations. Implementation challenges are evident in the disparity between organizations' confidence in their AI abilities and the results of projects they've completed. Although 82% of decision-makers say their organizations are either significantly or slightly ahead of the competition in implementing AI, only 18% outperformed expectations while 23% underperformed and 59% met expectations.

Observability and Improved DEX Help Overcome AI Challenges

It's clear that organizations are focused on AI because of its potential to deliver substantial competitive advantages. And the research shows that high-performing companies, or growth companies, are those giving AI higher priority than moderate or low performers.

In moving forward, there are several interrelated factors organizations can focus on to help AI's potential become a reality.

Prioritize Observability. When it comes to improving IT and digital services, decision-makers emphasize the importance of observability, which collects and analyzes full-system telemetry to measure the health of a system, detect issues, identify dependencies and improve performance. Observability has been shown to have a significant impact on improving data quality — a top concern with moving forward on AI. 84% of respondents said they want an AI observability platform as opposed to implementing point products.

Tap Into the Successes of High-Performers. Research has also found a clear connection between those who made the most use of AI and those who performed the best. These "high performers" are those organizations with an average change in revenue of 10.5% or more, and they happen to be leveraging AI to its absolute full capabilities (67%) when compared to low performers (45%). Organizations looking to implement AI successfully, like high performers, should be prioritizing similar strategies to ensure performance of models and data. Confidence in data is significantly higher in the top performers when compared to the low performers (53% vs. 28%).

Focus on Improving the Digital Experience. Across all respondents, the survey showed that decision-makers were deploying different AI capabilities to improve digital user experience. 85% said AI-driven analytics improve user experience, while 86% said AI automation is important to improve IT efficiency and deliver an improved digital experience for end users.

Cultivate Young Employees. Millennial and Generation Z employees, who will comprise 74% of the workforce by 2030, are by far the most attuned to AI, with 52% of Gen Z and 39% of millennials having a favorable view of AI, as opposed to Generation X (8%) and baby boomers (1%). They also are the most insistent on good DEX. A Riverbed survey last year found that 68% of decision-makers said poor DEX would drive younger employees to leave the company, putting a company's AI strategy front and center for business growth too.

Conclusion

Organizations are moving in a positive direction, with 92% having formed a department or team to address some combination of AI, user experience and observability, with 57% dedicating an internal team or department to AI and 45% targeting DEX and/or observability.

Using observability to improve data quality and system reliability, building on the work of high-performing, AI-conversant employees and focusing on improving the digital end user experience can go a long way toward setting organizations up for AI success.

Mike Marks is VP of Product Marketing at Riverbed

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...