Skip to main content

The Status of Enterprise AI: AI Hype to Reality

Mike Marks
Riverbed

Organizations are gearing up to let the AI rubber hit the road in business initiatives, having spent the past several years implementing AI models mostly to improve IT and operations.

According to a recent survey, organizations see AI as critically important to their futures, with 94% of respondents saying that AI was a top priority of C-suite executives, and 64% of decision-makers saying they plan to use AI to drive growth initiatives and new business models over the next three years. Decision-makers acknowledge, however, that work is needed in order to take full advantage of AI's transformative capabilities. Only 37% said they are fully prepared to implement AI projects right now, but 86% said they expect to be ready by 2027 — presenting a mismatch of AI expectations versus reality.

Image
Riverbed

For IT leaders, a few hurdles stand in the way of AI success. They include concerns over data quality, security and the ability to implement projects. Understanding and addressing these concerns can give organizations a realistic view of where they stand in implementing AI — and balance out a certain level of overconfidence many organizations seem to have — to enable them to make the most of the technology's potential.

Data Quality a Top Concern

Perhaps the biggest concern is over the quality of data. Leaders understand that high-quality data is essential to training AI models and ensuring efficient performance — 85% said so — but most acknowledge that their own data is currently lacking in completeness and accuracy. Only 43% described their data as excellent for quantity and completeness, and 40% rated the accuracy and integrity of their data as excellent. Overall, 69% questioned the effectiveness of using their organization's data for AI.

Without improvements, data quality could become a major stumbling block, as 42% of decision-makers said that a lack of high-quality internal data for training AI models would prevent them from investing more in the technology.

Security-related issues also could deter further AI investments, with 43% citing cybersecurity risks and 36% identifying regulatory and compliance concerns as potential reasons to hold back. More than three-quarters of respondents (76%) are concerned that their use of AI could result in AI accessing their proprietary data in the public domain.

These factors play into questions about the ability to implement AI projects, which has sometimes been a struggle for some organizations. Implementation challenges are evident in the disparity between organizations' confidence in their AI abilities and the results of projects they've completed. Although 82% of decision-makers say their organizations are either significantly or slightly ahead of the competition in implementing AI, only 18% outperformed expectations while 23% underperformed and 59% met expectations.

Observability and Improved DEX Help Overcome AI Challenges

It's clear that organizations are focused on AI because of its potential to deliver substantial competitive advantages. And the research shows that high-performing companies, or growth companies, are those giving AI higher priority than moderate or low performers.

In moving forward, there are several interrelated factors organizations can focus on to help AI's potential become a reality.

Prioritize Observability. When it comes to improving IT and digital services, decision-makers emphasize the importance of observability, which collects and analyzes full-system telemetry to measure the health of a system, detect issues, identify dependencies and improve performance. Observability has been shown to have a significant impact on improving data quality — a top concern with moving forward on AI. 84% of respondents said they want an AI observability platform as opposed to implementing point products.

Tap Into the Successes of High-Performers. Research has also found a clear connection between those who made the most use of AI and those who performed the best. These "high performers" are those organizations with an average change in revenue of 10.5% or more, and they happen to be leveraging AI to its absolute full capabilities (67%) when compared to low performers (45%). Organizations looking to implement AI successfully, like high performers, should be prioritizing similar strategies to ensure performance of models and data. Confidence in data is significantly higher in the top performers when compared to the low performers (53% vs. 28%).

Focus on Improving the Digital Experience. Across all respondents, the survey showed that decision-makers were deploying different AI capabilities to improve digital user experience. 85% said AI-driven analytics improve user experience, while 86% said AI automation is important to improve IT efficiency and deliver an improved digital experience for end users.

Cultivate Young Employees. Millennial and Generation Z employees, who will comprise 74% of the workforce by 2030, are by far the most attuned to AI, with 52% of Gen Z and 39% of millennials having a favorable view of AI, as opposed to Generation X (8%) and baby boomers (1%). They also are the most insistent on good DEX. A Riverbed survey last year found that 68% of decision-makers said poor DEX would drive younger employees to leave the company, putting a company's AI strategy front and center for business growth too.

Conclusion

Organizations are moving in a positive direction, with 92% having formed a department or team to address some combination of AI, user experience and observability, with 57% dedicating an internal team or department to AI and 45% targeting DEX and/or observability.

Using observability to improve data quality and system reliability, building on the work of high-performing, AI-conversant employees and focusing on improving the digital end user experience can go a long way toward setting organizations up for AI success.

Mike Marks is VP of Product Marketing at Riverbed

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

The Status of Enterprise AI: AI Hype to Reality

Mike Marks
Riverbed

Organizations are gearing up to let the AI rubber hit the road in business initiatives, having spent the past several years implementing AI models mostly to improve IT and operations.

According to a recent survey, organizations see AI as critically important to their futures, with 94% of respondents saying that AI was a top priority of C-suite executives, and 64% of decision-makers saying they plan to use AI to drive growth initiatives and new business models over the next three years. Decision-makers acknowledge, however, that work is needed in order to take full advantage of AI's transformative capabilities. Only 37% said they are fully prepared to implement AI projects right now, but 86% said they expect to be ready by 2027 — presenting a mismatch of AI expectations versus reality.

Image
Riverbed

For IT leaders, a few hurdles stand in the way of AI success. They include concerns over data quality, security and the ability to implement projects. Understanding and addressing these concerns can give organizations a realistic view of where they stand in implementing AI — and balance out a certain level of overconfidence many organizations seem to have — to enable them to make the most of the technology's potential.

Data Quality a Top Concern

Perhaps the biggest concern is over the quality of data. Leaders understand that high-quality data is essential to training AI models and ensuring efficient performance — 85% said so — but most acknowledge that their own data is currently lacking in completeness and accuracy. Only 43% described their data as excellent for quantity and completeness, and 40% rated the accuracy and integrity of their data as excellent. Overall, 69% questioned the effectiveness of using their organization's data for AI.

Without improvements, data quality could become a major stumbling block, as 42% of decision-makers said that a lack of high-quality internal data for training AI models would prevent them from investing more in the technology.

Security-related issues also could deter further AI investments, with 43% citing cybersecurity risks and 36% identifying regulatory and compliance concerns as potential reasons to hold back. More than three-quarters of respondents (76%) are concerned that their use of AI could result in AI accessing their proprietary data in the public domain.

These factors play into questions about the ability to implement AI projects, which has sometimes been a struggle for some organizations. Implementation challenges are evident in the disparity between organizations' confidence in their AI abilities and the results of projects they've completed. Although 82% of decision-makers say their organizations are either significantly or slightly ahead of the competition in implementing AI, only 18% outperformed expectations while 23% underperformed and 59% met expectations.

Observability and Improved DEX Help Overcome AI Challenges

It's clear that organizations are focused on AI because of its potential to deliver substantial competitive advantages. And the research shows that high-performing companies, or growth companies, are those giving AI higher priority than moderate or low performers.

In moving forward, there are several interrelated factors organizations can focus on to help AI's potential become a reality.

Prioritize Observability. When it comes to improving IT and digital services, decision-makers emphasize the importance of observability, which collects and analyzes full-system telemetry to measure the health of a system, detect issues, identify dependencies and improve performance. Observability has been shown to have a significant impact on improving data quality — a top concern with moving forward on AI. 84% of respondents said they want an AI observability platform as opposed to implementing point products.

Tap Into the Successes of High-Performers. Research has also found a clear connection between those who made the most use of AI and those who performed the best. These "high performers" are those organizations with an average change in revenue of 10.5% or more, and they happen to be leveraging AI to its absolute full capabilities (67%) when compared to low performers (45%). Organizations looking to implement AI successfully, like high performers, should be prioritizing similar strategies to ensure performance of models and data. Confidence in data is significantly higher in the top performers when compared to the low performers (53% vs. 28%).

Focus on Improving the Digital Experience. Across all respondents, the survey showed that decision-makers were deploying different AI capabilities to improve digital user experience. 85% said AI-driven analytics improve user experience, while 86% said AI automation is important to improve IT efficiency and deliver an improved digital experience for end users.

Cultivate Young Employees. Millennial and Generation Z employees, who will comprise 74% of the workforce by 2030, are by far the most attuned to AI, with 52% of Gen Z and 39% of millennials having a favorable view of AI, as opposed to Generation X (8%) and baby boomers (1%). They also are the most insistent on good DEX. A Riverbed survey last year found that 68% of decision-makers said poor DEX would drive younger employees to leave the company, putting a company's AI strategy front and center for business growth too.

Conclusion

Organizations are moving in a positive direction, with 92% having formed a department or team to address some combination of AI, user experience and observability, with 57% dedicating an internal team or department to AI and 45% targeting DEX and/or observability.

Using observability to improve data quality and system reliability, building on the work of high-performing, AI-conversant employees and focusing on improving the digital end user experience can go a long way toward setting organizations up for AI success.

Mike Marks is VP of Product Marketing at Riverbed

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...