Organizations are moving to microservices and cloud native architectures at an increasing pace. The primary incentive for these transformation projects is typically to increase the agility and velocity of software release and product innovation.
These dynamic systems, however, are far more complex to manage and monitor, and they generate far higher data volumes. According to a recent survey conducted by Forrester among infrastructure and cloud monitoring application decision makers, 88% said that they expect their data volume in the cloud to increase over the next two years, with 50% expecting it to grow significantly.
Scaling Cloud Environments Demand Efficient Observability Practices, Forrester, 2022
It’s not just about the quantity but the quality. Over half of the respondents in Forrester’s survey indicated poor data quality is a main challenge for their systems monitoring.
What is this monitoring data anyway?
The common baseline data is the "three pillars of observability", namely logs, metrics and traces. Logs and metrics have been with us in IT systems for many decades, but have experienced a surge with microservice architecture. Many flows that used to be internal within a monolith are now externalized interactions between microservices, producing corresponding logs and metrics for each such interaction and endpoint. The cardinality of the time-series metrics data is also exploding with the newly-introduced dimensions: just think about needing to slice and dice the performance of a workload per endpoint, per node, per pod, and per deployment version, to name just a few.
On top of that, distributed tracing, which used to be a niche tool, is becoming a mandatory component, in order to understand the flow of distributed requests and transactions in the system. In the recent DevOps Pulse survey issued by Logz.io, over 75% of respondents reported plans to deploy tracing in the next 1-3 years. This is not only an impressive percentage in its own right, but is also a sharp increase from the previous DevOps Pulse survey wherein only 65% responded that.
To make matters interesting, bear in mind that there are other signals beyond the traditional "three pillars," such as events and continuous profiling, which introduce additional types of data into the mix.
This data challenge isn’t a technical matter, but rather indicative of the nature of observability. As an industry we’ve been highly focused on the signal types (logs, metrics, traces) each with its own quirks, and have been growing siloed solutions for each signal type. Now it’s time to shift the focus and look at observability as a data analytics problem. Let’s start with the very definition of observability: rather than using the one borrowed from Control Theory, I favor the following definition:
"Observability is the capability to allow a human to ask and answer questions about the system."
Treating observability as a data analytics problem inevitably leads to better support in ad-hoc query capabilities, in better data enrichment and correlation capabilities, and most importantly in taking down the silos and fusing together all the data types and visualizations.
The open source community has been a key enabler for this evolution in observability. In the DevOps Pulse survey, around 40% reported that at least half of their tools are open source. This brings forth a unique opportunity for open source to enable better observability. It’s not just about the tools but, perhaps more importantly, about open standards. Cloud native systems have many moving pieces and telemetry data sources across polyglot microservices as well as multiple third party frameworks and services. This creates a significant challenge on the integration side. Almost half of the respondents in the DevOps Pulse survey indicated turning to open source observability for ease of integration. This is the place where open source shines.
Important projects under the Cloud Native Computing Foundation (CNCF), such as OpenMetrics and OpenTelemetry, offer a standard way for instrumenting applications to emit telemetry data, a standard format of exposing and transmitting the data, and a standard means for collecting that data. Unlike traditional logs, for example, which have traditionally been text based and unstructured, essentially the developer writing "notes to self" or for his teammates to decipher, the new formats are geared towards scalable machine analytics. This means well structured data, with strong typing and machine readable formats such as JSON and Protobuf.
More than three in four decision makers are increasing their use of cloud-native architectures like multi cloud workloads, serverless workloads, and workloads using containers. As the adoption grows, the data volumes and data-to-noise ratio will increase. It’s time to converge the industry around leading open standards and adopt data analytics practices for mastering that data, so that we can effectively monitor these systems.
The Latest
Incident management processes are not keeping pace with the demands of modern operations teams, failing to meet the needs of SREs as well as platform and ops teams. Results from the State of DevOps Automation and AI Survey, commissioned by Transposit, point to an incident management paradox. Despite nearly 60% of ITOps and DevOps professionals reporting they have a defined incident management process that's fully documented in one place and over 70% saying they have a level of automation that meets their needs, teams are unable to quickly resolve incidents ...
Today, in the world of enterprise technology, the challenges posed by legacy Virtual Desktop Infrastructure (VDI) systems have long been a source of concern for IT departments. In many instances, this promising solution has become an organizational burden, hindering progress, depleting resources, and taking a psychological and operational toll on employees ...
Within retail organizations across the world, IT teams will be bracing themselves for a hectic holiday season ... While this is an exciting opportunity for retailers to boost sales, it also intensifies severe risk. Any application performance slipup will cause consumers to turn their back on brands, possibly forever. Online shoppers will be completely unforgiving to any retailer who doesn't deliver a seamless digital experience ...
Black Friday is a time when consumers can cash in on some of the biggest deals retailers offer all year long ... Nearly two-thirds of consumers utilize a retailer's web and mobile app for holiday shopping, raising the stakes for competitors to provide the best online experience to retain customer loyalty. Perforce's 2023 Black Friday survey sheds light on consumers' expectations this time of year and how developers can properly prepare their applications for increased online traffic ...
This holiday shopping season, the stakes for online retailers couldn't be higher ... Even an hour or two of downtime for a digital storefront during this critical period can cost millions in lost revenue and has the potential to damage brand credibility. Savvy retailers are increasingly investing in observability to help ensure a seamless, omnichannel customer experience. Just ahead of the holiday season, New Relic released its State of Observability for Retail report, which offers insight and analysis on the adoption and business value of observability for the global retail/consumer industry ...
As organizations struggle to find and retain the talent they need to manage complex cloud implementations, many are leaning toward hybrid cloud as a solution ... While it's true that using the cloud is not a "one size fits all" proposition, it is clear that both large and small companies prefer a hybrid cloud model ...
In the same way a city is a sum of its districts and neighborhoods, complex IT systems are made of many components that continually interact. Observability requires a comprehensive and connected view of all aspects of the system, including even some that don't directly relate to its technological innards ...
Multicasting in this context refers to the process of directing data streams to two or more destinations. This might look like sending the same telemetry data to both an on-premises storage system and a cloud-based observability platform concurrently. The two principal benefits of this strategy are cost savings and service redundancy ...
In today's rapidly evolving business environment, Chief Information Officers (CIOs) and Chief Technology Officers (CTOs) are grappling with the challenge of regaining control over their IT roadmap. The constant evolution and introduction of new technology releases, combined with the pressure to deliver innovation on shrinking budgets, has added layers of complexity for executives who must transform the perception of the role of the IT leader from cost managers and maintainers to strategic enablers of growth and profitability ...
Artificial intelligence (AI) has saturated the conversation around technology as compelling new tools like ChatGPT produce headlines every day. Enterprise leaders have correctly identified the potential of AI — and its many tributary technologies — to generate new efficiencies at scale, particularly in the cloud era. But as we now know, these technologies are rarely plug-and-play, for reasons both technical and human ...