Skip to main content

The 5 Most Common Application Bottlenecks

Sven Hammar

Application bottlenecks can lead an otherwise functional computer or server to slow down to a crawl. The term "bottleneck" refers to both an overloaded network and the state of a computing device in which one component is unable to keep pace with the rest of the system, thus slowing overall performance.
 
Addressing bottleneck issues usually results in returning the system to operable performance levels; however, fixing bottleneck issues requires first identifying the underperforming component. These five bottleneck causes are among the most common:
 

1. CPU Utilization

 
According to Microsoft, "processor bottlenecks occur when the processor is so busy that it cannot respond to requests for time." Simply put, the central processing unit (CPU) is overloaded and unable to perform tasks in a timely manner.
 
CPU bottleneck shows up in two forms: a processor running at over 80 percent capacity for an extended period of time, and an overly long processor queue. CPU utilization bottlenecks often stem from insufficient system memory and continual interruption from input/output devices. Resolving these issues involves increasing CPU power, adding more random access memory (RAM), and improving software coding efficiency.
 

2. Memory Utilization

 
A memory bottleneck implies that the system does not have sufficient or fast enough RAM. This situation cuts the speed at which the RAM can serve information to the CPU, which slows overall operations. In cases where the system doesn’t have enough memory, the computer will start offloading storage to a significantly slower hard disc drive (HDD) or solid state drive (SSD) to keep things running. Alternatively, if the RAM cannot serve data to the CPU fast enough, the device will experience both slowdown and low CPU usage rates.
 
Resolving the issue typically involves installing higher capacity and/or faster RAM. In cases where the existing RAM is too slow, it needs to be replaced, whereas capacity bottlenecks can be dealt with simply by adding more memory. In other cases, the problem may stem from a programming error called a "memory leak," which means a program is not releasing memory for system use again when done using it. Resolving this issue requires a program fix.
 

3. Network Utilization

 
Network bottlenecks occur when the communication between two devices lacks the necessary bandwidth or processing power to complete a task quickly. According to Microsoft, network bottlenecks occur when there’s an overloaded server, an overburdened network communication device, and when the network itself loses integrity. Resolving network utilization issues typically involves upgrading or adding servers, as well as upgrading network hardware like routers, hubs, and access points.

4. Software Limitation

 
Sometimes bottleneck-related performance dips originate from the software itself. In some cases, programs can be built to handle only a finite number of tasks at once so the program won’t utilize any additional CPU or RAM assets even when available.
 
The most common cases of application problems are transactions that load the database and/or different system resources: static content, authentication, connections pools etc in way that is not optimized. I many cases configurations of application environments such as web server etc are done with default settings that respond poorly versus peak load traffic.
 

5. Disk Usage

 
The slowest component inside a computer or server is typically the long-term storage, which includes HDDs and SSDs, and is often an unavoidable bottleneck. Even the fastest long-term storage solutions have physical speed limits, making this bottleneck cause one of the more difficult ones to troubleshoot. In many cases, disk usage speed can improve by reducing fragmentation issues and increasing data caching rates in RAM. On a physical level, address insufficient bandwidth by switching to faster storage devices and expanding RAID (a data storage virtualization technology) configurations.
 
Load testing and monitoring tools are excellent at identifying bottleneck problems that hinder performance. Use these tools to optimize your business’s online platforms.

Hot Topics

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

The 5 Most Common Application Bottlenecks

Sven Hammar

Application bottlenecks can lead an otherwise functional computer or server to slow down to a crawl. The term "bottleneck" refers to both an overloaded network and the state of a computing device in which one component is unable to keep pace with the rest of the system, thus slowing overall performance.
 
Addressing bottleneck issues usually results in returning the system to operable performance levels; however, fixing bottleneck issues requires first identifying the underperforming component. These five bottleneck causes are among the most common:
 

1. CPU Utilization

 
According to Microsoft, "processor bottlenecks occur when the processor is so busy that it cannot respond to requests for time." Simply put, the central processing unit (CPU) is overloaded and unable to perform tasks in a timely manner.
 
CPU bottleneck shows up in two forms: a processor running at over 80 percent capacity for an extended period of time, and an overly long processor queue. CPU utilization bottlenecks often stem from insufficient system memory and continual interruption from input/output devices. Resolving these issues involves increasing CPU power, adding more random access memory (RAM), and improving software coding efficiency.
 

2. Memory Utilization

 
A memory bottleneck implies that the system does not have sufficient or fast enough RAM. This situation cuts the speed at which the RAM can serve information to the CPU, which slows overall operations. In cases where the system doesn’t have enough memory, the computer will start offloading storage to a significantly slower hard disc drive (HDD) or solid state drive (SSD) to keep things running. Alternatively, if the RAM cannot serve data to the CPU fast enough, the device will experience both slowdown and low CPU usage rates.
 
Resolving the issue typically involves installing higher capacity and/or faster RAM. In cases where the existing RAM is too slow, it needs to be replaced, whereas capacity bottlenecks can be dealt with simply by adding more memory. In other cases, the problem may stem from a programming error called a "memory leak," which means a program is not releasing memory for system use again when done using it. Resolving this issue requires a program fix.
 

3. Network Utilization

 
Network bottlenecks occur when the communication between two devices lacks the necessary bandwidth or processing power to complete a task quickly. According to Microsoft, network bottlenecks occur when there’s an overloaded server, an overburdened network communication device, and when the network itself loses integrity. Resolving network utilization issues typically involves upgrading or adding servers, as well as upgrading network hardware like routers, hubs, and access points.

4. Software Limitation

 
Sometimes bottleneck-related performance dips originate from the software itself. In some cases, programs can be built to handle only a finite number of tasks at once so the program won’t utilize any additional CPU or RAM assets even when available.
 
The most common cases of application problems are transactions that load the database and/or different system resources: static content, authentication, connections pools etc in way that is not optimized. I many cases configurations of application environments such as web server etc are done with default settings that respond poorly versus peak load traffic.
 

5. Disk Usage

 
The slowest component inside a computer or server is typically the long-term storage, which includes HDDs and SSDs, and is often an unavoidable bottleneck. Even the fastest long-term storage solutions have physical speed limits, making this bottleneck cause one of the more difficult ones to troubleshoot. In many cases, disk usage speed can improve by reducing fragmentation issues and increasing data caching rates in RAM. On a physical level, address insufficient bandwidth by switching to faster storage devices and expanding RAID (a data storage virtualization technology) configurations.
 
Load testing and monitoring tools are excellent at identifying bottleneck problems that hinder performance. Use these tools to optimize your business’s online platforms.

Hot Topics

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...