The Case for Putting AI and ML to Work in the IT Department
February 23, 2018

Phil Tee
Moogsoft

Share this

With 2017 behind us, the news cycle is still stirring up stories on artificial intelligence (AI) and machine learning (ML), but has some of the excitement worn off? We're witnessing a surge of activity in the space, with unexpected names like Ferrari throwing their hat into the ring, or some notable failures like a smart suitcase fleeing it's handler. Can actual examples of AI in the enterprise rise among some of the noise that's inundating the market and hindering the credibility of everyone?

What Comes Up, Must Come Down

This has happened before. Emergent technology faces a gauntlet, and Gartner's famous Hype Cycle model can help illustrate this point.

First, technology makes waves with a “trigger” that garners media attention or investor buy-in. This usually creates an overly-optimistic projection of what's possible, which aligns with Gartner's “peak of inflated expectations.”

At the top of that hill is where people start to question whether the technology that was introduced is truly capable of delivering what it claims. This is where harsh criticism hits from multiple angles, and the negativity can be so strong that some companies or technologies actually fail at this point.

Yet, if the technology weathers the storm, there is now a time for level-setting and a more realistic understanding of the market. We're seeing that artificial intelligence and machine learning are two technologies at various points in the hype cycle, but both will follow a similar path.

What's unique here, however, is that, due to the nature of AI and ML, there is a second failure option. With this type of technology, results are rapid and it is generally not possible to determine why a specific result was generated. Another frustration is that the speed of execution usually creates the inability to troubleshoot failures in detail. When put into a real-world environment outside of general deployment and testing, potential problems that might not have been obvious in the lab start to appear.

We can point to some failures — like a smart fridge misreading expiration dates or smart thermostats mistaking temperature readings — but these are minor compared to what else can happen. We've seen this in racist algorithms or facial-recognition incorrectly misidentifying someone at the scene of a riot.

But There is Proof it Can Work, Just Check Out the IT Department

So, is AI and ML worth the hassle? Has it hit rock bottom on the hype cycle without anyway to pick itself back up?

AIOps has a huge potential to transform IT and help streamline enterprise operations

Despite the obstacles, AI is proving itself each day and is key for a better future. Experts in the field are taking note of what works, and we've found that, to be successful, AI systems need data. Both quantity and quality matter, as they need to be trained with the information to make accurate assessments. A challenge today is not that data isn't available, but at times it's difficult to access, analyze and organize … yet the IT department has found itself an ideal center of operation by using the technology for “AIOPs.”

IT infrastructure generates data by the second, and while formats are diverse, data is already machine readable. Thankfully, it turns out that computers are already translating information from one representation to another.

Once this data is applied to an AI or ML system, it can apply various algorithms to try to make sense of them. This means it's seeking what information is significant or what is interconnected in the vast resources — something that an IT team currently does manually at the cost of countless man hours. AI and ML systems can take these huge swaths of data and order them in near real-time, focusing IT teams on what is truly mission critical. Not only does this free up valuable man hours of the IT team, but it elevates them to expand their daily work into new activities that can enhance the overall agility of the enterprise, rather than acting as a constant ticket desk.

AIOps has a huge potential to transform IT and help streamline enterprise operations, by presenting human specialists with actionable events, helping them collaborate more effectively, and learning and improving over time.

Phil Tee is CEO of Moogsoft
Share this

The Latest

July 23, 2024

The rapid rise of generative AI (GenAI) has caught everyone's attention, leaving many to wonder if the technology's impact will live up to the immense hype. A recent survey by Alteryx provides valuable insights into the current state of GenAI adoption, revealing a shift from inflated expectations to tangible value realization across enterprises ... Here are five key takeaways that underscore GenAI's progression from hype to real-world impact ...

July 22, 2024
A defective software update caused what some experts are calling the largest IT outage in history on Friday, July 19. The impact reverberated through multiple industries around the world ...
July 18, 2024

As software development grows more intricate, the challenge for observability engineers tasked with ensuring optimal system performance becomes more daunting. Current methodologies are struggling to keep pace, with the annual Observability Pulse surveys indicating a rise in Mean Time to Remediation (MTTR). According to this survey, only a small fraction of organizations, around 10%, achieve full observability today. Generative AI, however, promises to significantly move the needle ...

July 17, 2024

While nearly all data leaders surveyed are building generative AI applications, most don't believe their data estate is actually prepared to support them, according to the State of Reliable AI report from Monte Carlo Data ...

July 16, 2024

Enterprises are putting a lot of effort into improving the digital employee experience (DEX), which has become essential to both improving organizational performance and attracting and retaining talented workers. But to date, most efforts to deliver outstanding DEX have focused on people working with laptops, PCs, or thin clients. Employees on the frontlines, using mobile devices to handle logistics ... have been largely overlooked ...

July 15, 2024

The average customer-facing incident takes nearly three hours to resolve (175 minutes) while the estimated cost of downtime is $4,537 per minute, meaning each incident can cost nearly $794,000, according to new research from PagerDuty ...

July 12, 2024

In MEAN TIME TO INSIGHT Episode 8, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses AutoCon with the conference founders Scott Robohn and Chris Grundemann ...

July 11, 2024

Numerous vendors and service providers have recently embraced the NaaS concept, yet there is still no industry consensus on its definition or the types of networks it involves. Furthermore, providers have varied in how they define the NaaS service delivery model. I conducted research for a new report, Network as a Service: Understanding the Cloud Consumption Model in Networking, to refine the concept of NaaS and reduce buyer confusion over what it is and how it can offer value ...

July 10, 2024

Containers are a common theme of wasted spend among organizations, according to the State of Cloud Costs 2024 report from Datadog. In fact, 83% of container costs were associated with idle resources ...

July 10, 2024

Companies prefer a mix of on-prem and cloud environments, according to the 2024 Global State of IT Automation Report from Stonebranch. In only one year, hybrid IT usage has doubled from 34% to 68% ...