Skip to main content

The Case for Putting AI and ML to Work in the IT Department

Phil Tee

With 2017 behind us, the news cycle is still stirring up stories on artificial intelligence (AI) and machine learning (ML), but has some of the excitement worn off? We're witnessing a surge of activity in the space, with unexpected names like Ferrari throwing their hat into the ring, or some notable failures like a smart suitcase fleeing it's handler. Can actual examples of AI in the enterprise rise among some of the noise that's inundating the market and hindering the credibility of everyone?

What Comes Up, Must Come Down

This has happened before. Emergent technology faces a gauntlet, and Gartner's famous Hype Cycle model can help illustrate this point.

First, technology makes waves with a “trigger” that garners media attention or investor buy-in. This usually creates an overly-optimistic projection of what's possible, which aligns with Gartner's “peak of inflated expectations.”

At the top of that hill is where people start to question whether the technology that was introduced is truly capable of delivering what it claims. This is where harsh criticism hits from multiple angles, and the negativity can be so strong that some companies or technologies actually fail at this point.

Yet, if the technology weathers the storm, there is now a time for level-setting and a more realistic understanding of the market. We're seeing that artificial intelligence and machine learning are two technologies at various points in the hype cycle, but both will follow a similar path.

What's unique here, however, is that, due to the nature of AI and ML, there is a second failure option. With this type of technology, results are rapid and it is generally not possible to determine why a specific result was generated. Another frustration is that the speed of execution usually creates the inability to troubleshoot failures in detail. When put into a real-world environment outside of general deployment and testing, potential problems that might not have been obvious in the lab start to appear.

We can point to some failures — like a smart fridge misreading expiration dates or smart thermostats mistaking temperature readings — but these are minor compared to what else can happen. We've seen this in racist algorithms or facial-recognition incorrectly misidentifying someone at the scene of a riot.

But There is Proof it Can Work, Just Check Out the IT Department

So, is AI and ML worth the hassle? Has it hit rock bottom on the hype cycle without anyway to pick itself back up?

AIOps has a huge potential to transform IT and help streamline enterprise operations

Despite the obstacles, AI is proving itself each day and is key for a better future. Experts in the field are taking note of what works, and we've found that, to be successful, AI systems need data. Both quantity and quality matter, as they need to be trained with the information to make accurate assessments. A challenge today is not that data isn't available, but at times it's difficult to access, analyze and organize … yet the IT department has found itself an ideal center of operation by using the technology for “AIOPs.”

IT infrastructure generates data by the second, and while formats are diverse, data is already machine readable. Thankfully, it turns out that computers are already translating information from one representation to another.

Once this data is applied to an AI or ML system, it can apply various algorithms to try to make sense of them. This means it's seeking what information is significant or what is interconnected in the vast resources — something that an IT team currently does manually at the cost of countless man hours. AI and ML systems can take these huge swaths of data and order them in near real-time, focusing IT teams on what is truly mission critical. Not only does this free up valuable man hours of the IT team, but it elevates them to expand their daily work into new activities that can enhance the overall agility of the enterprise, rather than acting as a constant ticket desk.

AIOps has a huge potential to transform IT and help streamline enterprise operations, by presenting human specialists with actionable events, helping them collaborate more effectively, and learning and improving over time.

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...

The Case for Putting AI and ML to Work in the IT Department

Phil Tee

With 2017 behind us, the news cycle is still stirring up stories on artificial intelligence (AI) and machine learning (ML), but has some of the excitement worn off? We're witnessing a surge of activity in the space, with unexpected names like Ferrari throwing their hat into the ring, or some notable failures like a smart suitcase fleeing it's handler. Can actual examples of AI in the enterprise rise among some of the noise that's inundating the market and hindering the credibility of everyone?

What Comes Up, Must Come Down

This has happened before. Emergent technology faces a gauntlet, and Gartner's famous Hype Cycle model can help illustrate this point.

First, technology makes waves with a “trigger” that garners media attention or investor buy-in. This usually creates an overly-optimistic projection of what's possible, which aligns with Gartner's “peak of inflated expectations.”

At the top of that hill is where people start to question whether the technology that was introduced is truly capable of delivering what it claims. This is where harsh criticism hits from multiple angles, and the negativity can be so strong that some companies or technologies actually fail at this point.

Yet, if the technology weathers the storm, there is now a time for level-setting and a more realistic understanding of the market. We're seeing that artificial intelligence and machine learning are two technologies at various points in the hype cycle, but both will follow a similar path.

What's unique here, however, is that, due to the nature of AI and ML, there is a second failure option. With this type of technology, results are rapid and it is generally not possible to determine why a specific result was generated. Another frustration is that the speed of execution usually creates the inability to troubleshoot failures in detail. When put into a real-world environment outside of general deployment and testing, potential problems that might not have been obvious in the lab start to appear.

We can point to some failures — like a smart fridge misreading expiration dates or smart thermostats mistaking temperature readings — but these are minor compared to what else can happen. We've seen this in racist algorithms or facial-recognition incorrectly misidentifying someone at the scene of a riot.

But There is Proof it Can Work, Just Check Out the IT Department

So, is AI and ML worth the hassle? Has it hit rock bottom on the hype cycle without anyway to pick itself back up?

AIOps has a huge potential to transform IT and help streamline enterprise operations

Despite the obstacles, AI is proving itself each day and is key for a better future. Experts in the field are taking note of what works, and we've found that, to be successful, AI systems need data. Both quantity and quality matter, as they need to be trained with the information to make accurate assessments. A challenge today is not that data isn't available, but at times it's difficult to access, analyze and organize … yet the IT department has found itself an ideal center of operation by using the technology for “AIOPs.”

IT infrastructure generates data by the second, and while formats are diverse, data is already machine readable. Thankfully, it turns out that computers are already translating information from one representation to another.

Once this data is applied to an AI or ML system, it can apply various algorithms to try to make sense of them. This means it's seeking what information is significant or what is interconnected in the vast resources — something that an IT team currently does manually at the cost of countless man hours. AI and ML systems can take these huge swaths of data and order them in near real-time, focusing IT teams on what is truly mission critical. Not only does this free up valuable man hours of the IT team, but it elevates them to expand their daily work into new activities that can enhance the overall agility of the enterprise, rather than acting as a constant ticket desk.

AIOps has a huge potential to transform IT and help streamline enterprise operations, by presenting human specialists with actionable events, helping them collaborate more effectively, and learning and improving over time.

Hot Topics

The Latest

According to Auvik's 2025 IT Trends Report, 60% of IT professionals feel at least moderately burned out on the job, with 43% stating that their workload is contributing to work stress. At the same time, many IT professionals are naming AI and machine learning as key areas they'd most like to upskill ...

Businesses that face downtime or outages risk financial and reputational damage, as well as reducing partner, shareholder, and customer trust. One of the major challenges that enterprises face is implementing a robust business continuity plan. What's the solution? The answer may lie in disaster recovery tactics such as truly immutable storage and regular disaster recovery testing ...

IT spending is expected to jump nearly 10% in 2025, and organizations are now facing pressure to manage costs without slowing down critical functions like observability. To meet the challenge, leaders are turning to smarter, more cost effective business strategies. Enter stage right: OpenTelemetry, the missing piece of the puzzle that is no longer just an option but rather a strategic advantage ...

Amidst the threat of cyberhacks and data breaches, companies install several security measures to keep their business safely afloat. These measures aim to protect businesses, employees, and crucial data. Yet, employees perceive them as burdensome. Frustrated with complex logins, slow access, and constant security checks, workers decide to completely bypass all security set-ups ...

Image
Cloudbrink's Personal SASE services provide last-mile acceleration and reduction in latency

In MEAN TIME TO INSIGHT Episode 13, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at EMA discusses hybrid multi-cloud networking strategy ... 

In high-traffic environments, the sheer volume and unpredictable nature of network incidents can quickly overwhelm even the most skilled teams, hindering their ability to react swiftly and effectively, potentially impacting service availability and overall business performance. This is where closed-loop remediation comes into the picture: an IT management concept designed to address the escalating complexity of modern networks ...

In 2025, enterprise workflows are undergoing a seismic shift. Propelled by breakthroughs in generative AI (GenAI), large language models (LLMs), and natural language processing (NLP), a new paradigm is emerging — agentic AI. This technology is not just automating tasks; it's reimagining how organizations make decisions, engage customers, and operate at scale ...

In the early days of the cloud revolution, business leaders perceived cloud services as a means of sidelining IT organizations. IT was too slow, too expensive, or incapable of supporting new technologies. With a team of developers, line of business managers could deploy new applications and services in the cloud. IT has been fighting to retake control ever since. Today, IT is back in the driver's seat, according to new research by Enterprise Management Associates (EMA) ...

In today's fast-paced and increasingly complex network environments, Network Operations Centers (NOCs) are the backbone of ensuring continuous uptime, smooth service delivery, and rapid issue resolution. However, the challenges faced by NOC teams are only growing. In a recent study, 78% state network complexity has grown significantly over the last few years while 84% regularly learn about network issues from users. It is imperative we adopt a new approach to managing today's network experiences ...

Image
Broadcom

From growing reliance on FinOps teams to the increasing attention on artificial intelligence (AI), and software licensing, the Flexera 2025 State of the Cloud Report digs into how organizations are improving cloud spend efficiency, while tackling the complexities of emerging technologies ...