Skip to main content

The Case for Putting AI and ML to Work in the IT Department

Phil Tee

With 2017 behind us, the news cycle is still stirring up stories on artificial intelligence (AI) and machine learning (ML), but has some of the excitement worn off? We're witnessing a surge of activity in the space, with unexpected names like Ferrari throwing their hat into the ring, or some notable failures like a smart suitcase fleeing it's handler. Can actual examples of AI in the enterprise rise among some of the noise that's inundating the market and hindering the credibility of everyone?

What Comes Up, Must Come Down

This has happened before. Emergent technology faces a gauntlet, and Gartner's famous Hype Cycle model can help illustrate this point.

First, technology makes waves with a “trigger” that garners media attention or investor buy-in. This usually creates an overly-optimistic projection of what's possible, which aligns with Gartner's “peak of inflated expectations.”

At the top of that hill is where people start to question whether the technology that was introduced is truly capable of delivering what it claims. This is where harsh criticism hits from multiple angles, and the negativity can be so strong that some companies or technologies actually fail at this point.

Yet, if the technology weathers the storm, there is now a time for level-setting and a more realistic understanding of the market. We're seeing that artificial intelligence and machine learning are two technologies at various points in the hype cycle, but both will follow a similar path.

What's unique here, however, is that, due to the nature of AI and ML, there is a second failure option. With this type of technology, results are rapid and it is generally not possible to determine why a specific result was generated. Another frustration is that the speed of execution usually creates the inability to troubleshoot failures in detail. When put into a real-world environment outside of general deployment and testing, potential problems that might not have been obvious in the lab start to appear.

We can point to some failures — like a smart fridge misreading expiration dates or smart thermostats mistaking temperature readings — but these are minor compared to what else can happen. We've seen this in racist algorithms or facial-recognition incorrectly misidentifying someone at the scene of a riot.

But There is Proof it Can Work, Just Check Out the IT Department

So, is AI and ML worth the hassle? Has it hit rock bottom on the hype cycle without anyway to pick itself back up?

AIOps has a huge potential to transform IT and help streamline enterprise operations

Despite the obstacles, AI is proving itself each day and is key for a better future. Experts in the field are taking note of what works, and we've found that, to be successful, AI systems need data. Both quantity and quality matter, as they need to be trained with the information to make accurate assessments. A challenge today is not that data isn't available, but at times it's difficult to access, analyze and organize … yet the IT department has found itself an ideal center of operation by using the technology for “AIOPs.”

IT infrastructure generates data by the second, and while formats are diverse, data is already machine readable. Thankfully, it turns out that computers are already translating information from one representation to another.

Once this data is applied to an AI or ML system, it can apply various algorithms to try to make sense of them. This means it's seeking what information is significant or what is interconnected in the vast resources — something that an IT team currently does manually at the cost of countless man hours. AI and ML systems can take these huge swaths of data and order them in near real-time, focusing IT teams on what is truly mission critical. Not only does this free up valuable man hours of the IT team, but it elevates them to expand their daily work into new activities that can enhance the overall agility of the enterprise, rather than acting as a constant ticket desk.

AIOps has a huge potential to transform IT and help streamline enterprise operations, by presenting human specialists with actionable events, helping them collaborate more effectively, and learning and improving over time.

Hot Topics

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...

The Case for Putting AI and ML to Work in the IT Department

Phil Tee

With 2017 behind us, the news cycle is still stirring up stories on artificial intelligence (AI) and machine learning (ML), but has some of the excitement worn off? We're witnessing a surge of activity in the space, with unexpected names like Ferrari throwing their hat into the ring, or some notable failures like a smart suitcase fleeing it's handler. Can actual examples of AI in the enterprise rise among some of the noise that's inundating the market and hindering the credibility of everyone?

What Comes Up, Must Come Down

This has happened before. Emergent technology faces a gauntlet, and Gartner's famous Hype Cycle model can help illustrate this point.

First, technology makes waves with a “trigger” that garners media attention or investor buy-in. This usually creates an overly-optimistic projection of what's possible, which aligns with Gartner's “peak of inflated expectations.”

At the top of that hill is where people start to question whether the technology that was introduced is truly capable of delivering what it claims. This is where harsh criticism hits from multiple angles, and the negativity can be so strong that some companies or technologies actually fail at this point.

Yet, if the technology weathers the storm, there is now a time for level-setting and a more realistic understanding of the market. We're seeing that artificial intelligence and machine learning are two technologies at various points in the hype cycle, but both will follow a similar path.

What's unique here, however, is that, due to the nature of AI and ML, there is a second failure option. With this type of technology, results are rapid and it is generally not possible to determine why a specific result was generated. Another frustration is that the speed of execution usually creates the inability to troubleshoot failures in detail. When put into a real-world environment outside of general deployment and testing, potential problems that might not have been obvious in the lab start to appear.

We can point to some failures — like a smart fridge misreading expiration dates or smart thermostats mistaking temperature readings — but these are minor compared to what else can happen. We've seen this in racist algorithms or facial-recognition incorrectly misidentifying someone at the scene of a riot.

But There is Proof it Can Work, Just Check Out the IT Department

So, is AI and ML worth the hassle? Has it hit rock bottom on the hype cycle without anyway to pick itself back up?

AIOps has a huge potential to transform IT and help streamline enterprise operations

Despite the obstacles, AI is proving itself each day and is key for a better future. Experts in the field are taking note of what works, and we've found that, to be successful, AI systems need data. Both quantity and quality matter, as they need to be trained with the information to make accurate assessments. A challenge today is not that data isn't available, but at times it's difficult to access, analyze and organize … yet the IT department has found itself an ideal center of operation by using the technology for “AIOPs.”

IT infrastructure generates data by the second, and while formats are diverse, data is already machine readable. Thankfully, it turns out that computers are already translating information from one representation to another.

Once this data is applied to an AI or ML system, it can apply various algorithms to try to make sense of them. This means it's seeking what information is significant or what is interconnected in the vast resources — something that an IT team currently does manually at the cost of countless man hours. AI and ML systems can take these huge swaths of data and order them in near real-time, focusing IT teams on what is truly mission critical. Not only does this free up valuable man hours of the IT team, but it elevates them to expand their daily work into new activities that can enhance the overall agility of the enterprise, rather than acting as a constant ticket desk.

AIOps has a huge potential to transform IT and help streamline enterprise operations, by presenting human specialists with actionable events, helping them collaborate more effectively, and learning and improving over time.

Hot Topics

The Latest

AI is the catalyst for significant investment in data teams as enterprises require higher-quality data to power their AI applications, according to the State of Analytics Engineering Report from dbt Labs ...

Misaligned architecture can lead to business consequences, with 93% of respondents reporting negative outcomes such as service disruptions, high operational costs and security challenges ...

A Gartner analyst recently suggested that GenAI tools could create 25% time savings for network operational teams. Where might these time savings come from? How are GenAI tools helping NetOps teams today, and what other tasks might they take on in the future as models continue improving? In general, these savings come from automating or streamlining manual NetOps tasks ...

IT and line-of-business teams are increasingly aligned in their efforts to close the data gap and drive greater collaboration to alleviate IT bottlenecks and offload growing demands on IT teams, according to The 2025 Automation Benchmark Report: Insights from IT Leaders on Enterprise Automation & the Future of AI-Driven Businesses from Jitterbit ...

A large majority (86%) of data management and AI decision makers cite protecting data privacy as a top concern, with 76% of respondents citing ROI on data privacy and AI initiatives across their organization, according to a new Harris Poll from Collibra ...

According to Gartner, Inc. the following six trends will shape the future of cloud over the next four years, ultimately resulting in new ways of working that are digital in nature and transformative in impact ...

2020 was the equivalent of a wedding with a top-shelf open bar. As businesses scrambled to adjust to remote work, digital transformation accelerated at breakneck speed. New software categories emerged overnight. Tech stacks ballooned with all sorts of SaaS apps solving ALL the problems — often with little oversight or long-term integration planning, and yes frequently a lot of duplicated functionality ... But now the music's faded. The lights are on. Everyone from the CIO to the CFO is checking the bill. Welcome to the Great SaaS Hangover ...

Regardless of OpenShift being a scalable and flexible software, it can be a pain to monitor since complete visibility into the underlying operations is not guaranteed ... To effectively monitor an OpenShift environment, IT administrators should focus on these five key elements and their associated metrics ...

An overwhelming majority of IT leaders (95%) believe the upcoming wave of AI-powered digital transformation is set to be the most impactful and intensive seen thus far, according to The Science of Productivity: AI, Adoption, And Employee Experience, a new report from Nexthink ...

Overall outage frequency and the general level of reported severity continue to decline, according to the Outage Analysis 2025 from Uptime Institute. However, cyber security incidents are on the rise and often have severe, lasting impacts ...