The Case for Putting AI and ML to Work in the IT Department
February 23, 2018

Phil Tee
Moogsoft

Share this

With 2017 behind us, the news cycle is still stirring up stories on artificial intelligence (AI) and machine learning (ML), but has some of the excitement worn off? We're witnessing a surge of activity in the space, with unexpected names like Ferrari throwing their hat into the ring, or some notable failures like a smart suitcase fleeing it's handler. Can actual examples of AI in the enterprise rise among some of the noise that's inundating the market and hindering the credibility of everyone?

What Comes Up, Must Come Down

This has happened before. Emergent technology faces a gauntlet, and Gartner's famous Hype Cycle model can help illustrate this point.

First, technology makes waves with a “trigger” that garners media attention or investor buy-in. This usually creates an overly-optimistic projection of what's possible, which aligns with Gartner's “peak of inflated expectations.”

At the top of that hill is where people start to question whether the technology that was introduced is truly capable of delivering what it claims. This is where harsh criticism hits from multiple angles, and the negativity can be so strong that some companies or technologies actually fail at this point.

Yet, if the technology weathers the storm, there is now a time for level-setting and a more realistic understanding of the market. We're seeing that artificial intelligence and machine learning are two technologies at various points in the hype cycle, but both will follow a similar path.

What's unique here, however, is that, due to the nature of AI and ML, there is a second failure option. With this type of technology, results are rapid and it is generally not possible to determine why a specific result was generated. Another frustration is that the speed of execution usually creates the inability to troubleshoot failures in detail. When put into a real-world environment outside of general deployment and testing, potential problems that might not have been obvious in the lab start to appear.

We can point to some failures — like a smart fridge misreading expiration dates or smart thermostats mistaking temperature readings — but these are minor compared to what else can happen. We've seen this in racist algorithms or facial-recognition incorrectly misidentifying someone at the scene of a riot.

But There is Proof it Can Work, Just Check Out the IT Department

So, is AI and ML worth the hassle? Has it hit rock bottom on the hype cycle without anyway to pick itself back up?

AIOps has a huge potential to transform IT and help streamline enterprise operations

Despite the obstacles, AI is proving itself each day and is key for a better future. Experts in the field are taking note of what works, and we've found that, to be successful, AI systems need data. Both quantity and quality matter, as they need to be trained with the information to make accurate assessments. A challenge today is not that data isn't available, but at times it's difficult to access, analyze and organize … yet the IT department has found itself an ideal center of operation by using the technology for “AIOPs.”

IT infrastructure generates data by the second, and while formats are diverse, data is already machine readable. Thankfully, it turns out that computers are already translating information from one representation to another.

Once this data is applied to an AI or ML system, it can apply various algorithms to try to make sense of them. This means it's seeking what information is significant or what is interconnected in the vast resources — something that an IT team currently does manually at the cost of countless man hours. AI and ML systems can take these huge swaths of data and order them in near real-time, focusing IT teams on what is truly mission critical. Not only does this free up valuable man hours of the IT team, but it elevates them to expand their daily work into new activities that can enhance the overall agility of the enterprise, rather than acting as a constant ticket desk.

AIOps has a huge potential to transform IT and help streamline enterprise operations, by presenting human specialists with actionable events, helping them collaborate more effectively, and learning and improving over time.

Phil Tee is CEO of Moogsoft
Share this

The Latest

February 14, 2019

Part 3 of our three-part blog series on the shortcomings of traditional APM solutions for monitoring microservices based applications explains how the alerting and troubleshooting capabilities of traditional APM do not address the evolving requirements of monitoring microservices based applications ...

February 13, 2019

In a digital world where the speed of innovation matters, are you anchored down by legacy APM agents? ...

February 12, 2019

In a digital world where customer experience defines your business, is your APM solution doing its job? This may seem like a strange question to open a technical blog on Application Performance Management (APM), but it's not. With customer experience today largely driven by software, we think there's no more important question to ask ...

February 11, 2019

According to the NetEnrich 2019 Cloud Adoption survey, 68% of enterprise IT departments are using public cloud infrastructure today, and 27% of respondents said that doing so is part of their near-term plan ...

February 08, 2019

Organizations and their IT teams are not in sync when pursuing their digital transformation strategies, according to a new report released today by The Economist Intelligence Unit ...

February 07, 2019

Having the right tools and good visibility are critical to understanding what's going on in your network and applications. However, as networks become more complex and hybrid in nature, organizations can no longer afford to be reactive and rely only on portable diagnostic tools. They need real-time, comprehensive visibility ...

February 06, 2019

When building out new services, SaaS providers need to keep in mind a set of best practices and "habits of success," which cover their organization's culture, relationships with third-party providers and customers, and overall strategic decisions and operational know-how. If you're a SaaS application provider, here are five considerations you need to keep in mind ...

February 05, 2019

In the coming weeks, EMA will be gathering data on what we believe is a unique research topic — approaching DevOps initiatives from the perspectives of all key constituents. We're doing this to try to break through some of the "false walls" created by more niche, market-defined insights, or some of our industry hyperbole. Here are some of the directions we're pursuing ...

February 01, 2019

An application on your network is running slow. Before you even understand what the problem is, the network is blamed for the issue. This puts network teams in a dangerous position — guilty until proven innocent. Even when network teams are sure an issue doesn't stem from a network problem, they are still forced to prove it, spending sometimes significant amounts of time going through troubleshooting processes, looking for a problem that doesn't exist ...

January 31, 2019

Tap and SPAN. It's the same thing, right? That answer would be wrong. Some network engineers may not know the difference, but there are definitely clear and distinct differences between these two types of devices. Understanding these differences will help you elevate your game when it comes to network performance monitoring and application performance monitoring ...