The Recurring Advantages of Intelligent Availability
July 17, 2018

Don Boxley
DH2i

Share this

The essential value resulting from data-driven processes has become progressively linked with analytics. Once considered a desired complement to intuitive decision-making, analytics has developed into a main focus of mission-critical applications across industries for any number of use cases.

However, as the motives for employing analytics for business processes have increased, so has the intricacy of deployments. Organizations must now habitually confront circumstances in which data is spread across a plenitude of environments, making it arduous, error-prone and time-consuming to try to centralize for a single use case. Perhaps even more widespread is the reality in which it’s beneficial to deploy in multiple settings (such as with Linux platforms, in the cloud, or with containers), but budgetary or technological shortcomings make it unviable. Certainly, application performance oftentimes suffers as well.

The truth is today’s ever-shifting data space warrants enterprise agility for analytics as much as for any other aspect of competitive advantage. Processing is optimized by performing analytics as close to data as possible, which may need to switch locations for disaster recovery (DR), scheduled downtime, or limited-time pricing offers in the cloud.

By embracing an agile approach predicated on what can be called “intelligent availability” organizations can dynamically provision analytics in a plethora of environments to satisfy numerous business use cases, seamlessly and rapidly transferring data between on-premises settings (including both Windows and Linux machines), the cloud and containers.

Consequently, they enjoy decreased infrastructure costs, effective DR, and an overall greater yield for analytics — and that of data in general.

Analytics in the Cloud

One of the more widespread methodologies in which intelligent availability improves analytics is with cloud deployments. There are a number of advantages to going to the cloud for analytics, not the least of which are the pay-per-use pricing model, decreased infrastructure, and elastic scalability of cloud resources. There are also several software-as-a-service (SaaS) and platform-as-a-service (PaaS) options — some of which involve advanced analytics capabilities for machine learning and neural networks — for users without data science experts on staff.

Nonetheless, the most persuasive reason for running analytics in the cloud is facing the alternative: attempting to scale on premises. Customarily, scaling in physical environments involved an exponential curve with numerous unalterable costs which frequently limited application performance and enterprise agility. By scaling in the cloud and with other contemporary measures, however, organizations enjoy a far more affordable linear curve.

This point is best demonstrated by a healthcare example in which a well-known, global healthcare organization was using SQL Server on premises for its OLTP, yet wanted to deploy a cloud model for Business Intelligence (BI). The choice was clear: either ignore budget constraints by indulging in additional physical infrastructure (with all the unavoidable costs for licenses and servers) or deploy to the cloud for real-time data access of their present kit. The latter option decreased costs and maximized operational efficiency, as will the majority of well-implemented analytics solutions in the cloud.

The Upside

In this case and a number of others, optimizing cloud analytics involves continually replicating on-premises data to the cloud. Shrewd organizations minimize these costs by opting for asynchronous replication; the aforementioned healthcare entity did so with approximately a second latency for near real-time access of its healthcare data. Replication to the cloud is often inexpensive or even free, making the data transfer component highly cost-effective. By making this data available for BI in the cloud, this organization effected several advantages. The most prominent was the reproducibility of a single dataset for multiple uses. Business users — in this case physicians, clinicians, nurses, back-office staff, etc. — are able to access this read-only data for intelligence to impact diagnosis or treatment options, as well as for administrative/operational requirements (OLTP).

This latter point is extremely important. With this paradigm, there are no application performance issues compromising the work of those using on-premises data because of reporting — which could occur if each group was provisioning the same copy of the data for their respective uses. Instead, each user benefits mutually from this model.

The healthcare group is assisted by the primary data being stored on premises, which is important for compliance measures in this highly regulated industry. It’s also important to note the flexibility of this architecture, which most immediately affects cloud users. Organizations can establish clusters in any of the major cloud providers such as Amazon Web Services (AWS), Azure, or any private or hybrid clouds they like. They can also readily transition resources between these providers as they see fit: feasibly according to use case or for discounted pricing. Even better, when they no longer need those analytics they can speedily and painlessly halt those deployments — or simply migrate them to other environments involving containers, for example.

Plus Automatic Failovers

The above-mentioned healthcare group also gets a third advantage when utilizing an intelligent availability approach for running analytics in the cloud: automatic failover. In the event of any sort of downtime for on-premises infrastructure (which could include scheduled maintenance or any sort of catastrophic event), its data will automatically failover to the cloud using intelligent availability techniques. The ensuing continuity enables both groups of users to continue accessing data so that there is no downtime. Those primary workloads simply transfer to cloud servers, so workloads are still running. This benefit typifies the agility of an intelligent availability approach. Workloads are able to run continuously despite downtime situations. What’s more, they run where users specify them to create the most meaningful competitive advantage. Most high availability methods don’t provide users with the flexibility of choosing between Windows or Linux settings. There’s also a simplicity of management and resiliency for Availability Groups facilitated by intelligent availability solutions, which provision resources where they’re needed without downtime.

Recurring Advantages

Intelligent availability solutions and methodologies enable users to maximize analytic output by creating recurring advantages from what is essentially the same dataset. They allow users to move copies of that data to and between cloud providers for low latency analytics capabilities, with some of the most advanced techniques in use today. What’s more, this approach does so while maintaining critical governance and performance requirements for on-premises deployments. Perhaps best of all, it maintains these benefits while automatically failing over to offsite locations to preserve the continuity of workflows in an era in which information technology is anything but predictable.

Don Boxley is CEO and Co-Founder of DH2i
Share this

The Latest

March 04, 2024

This year's Super Bowl drew in viewership of nearly 124 million viewers and made history as the most-watched live broadcast event since the 1969 moon landing. To support this spike in viewership, streaming companies like YouTube TV, Hulu and Paramount+ began preparing their IT infrastructure months in advance to ensure an exceptional viewer experience without outages or major interruptions. New Relic conducted a survey to understand the importance of a seamless viewing experience and the impact of outages during major streaming events such as the Super Bowl ...

March 01, 2024

As organizations continue to navigate the complexities of the digital era, which has been marked by exponential advancements in AI and technology, the strategic deployment of modern, practical applications has become indispensable for sustaining competitive advantage and realizing business goals. The Info-Tech Research Group report, Applications Priorities 2024, explores the following five initiatives for emerging and leading-edge technologies and practices that can enable IT and applications leaders to optimize their application portfolio and improve on capabilities needed to meet the ambitions of their organizations ...

February 29, 2024

Despite the growth in popularity of artificial intelligence (AI) and ML across a number of industries, there is still a huge amount of unrealized potential, with many businesses playing catch-up and still planning how ML solutions can best facilitate processes. Further progression could be limited without investment in specialized technical teams to drive development and integration ...

February 28, 2024

With over 200 streaming services to choose from, including multiple platforms featuring similar types of entertainment, users have little incentive to remain loyal to any given platform if it exhibits performance issues. Big names in streaming like Hulu, Amazon Prime and HBO Max invest thousands of hours into engineering observability and closed-loop monitoring to combat infrastructure and application issues, but smaller platforms struggle to remain competitive without access to the same resources ...

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...