The Unseen Cost of Observability: The Need for Continuous Code Improvement
March 29, 2021

Cory Virok
Rollbar

Share this

Developers are getting better at building software, but we're not getting better at fixing it.

The problem is that fixing bugs and errors is still a very manual process. Developers have to dedicate significant time and effort investigating what went wrong before they can even begin to fix issues. That's because traditional observability tools will tell you if your infrastructure is having problems, but don't provide the context a developer needs to fix the code or how to prioritize them based on business requirements. Also, traditional observability tools produce far too much noise and too many false positives, leading to alert fatigue.

This drains developer time and productivity — and can result in a fair amount of frustration.

Fixing Bugs and Errors Is Developers' No. 1 Pain Point

Rollbar research reveals that fixing bugs and errors in code is developers' No. 1 pain point.

The research, based on a survey of nearly 1,000 developers, also indicates that 88% of developers feel that traditional tools used for error monitoring fall short of their expectations.

The developer survey group explained that traditional error monitoring is lacking because:

■ It requires them to manually respond to errors (39%)

■ It takes them too long to find all of the details they need to fix bugs and errors (36%)

■ It focuses on system stability and not enough on code health (31%)

■ It makes it difficult to detect errors (29%)

■ Its approach to error aggregation is either too broad or too narrow (23%)

With Traditional Troubleshooting, Developers Spend Significant Time Investigating Problems

This example will illustrate how many of these challenges can play out for an organization.

Imagine that you launched a new web app feature after ensuring the feature passed all tests. But in the morning, the support team finds that your highest paying customer has reported a single issue. Then another issue comes in from the same customer, and then another. The frustrated customer then mentions your company on Twitter in an effort to get your attention.

Customer support escalates this issue to their lead. The lead brings in the product manager, who asks someone to investigate. Your company's site reliability engineering (SRE) team investigates, but everything is looking good as far as they can see. Their telemetry shows that the error response rate is about the same, all servers are up, and the database is in good shape.

Eventually, a lead developer is tasked to investigate. Essentially, this individual needs to answer one question as quickly as possible: How do I reproduce this? To get the answer, the developer must talk to the customer to understand exactly what issue that customer is facing. This typically takes several hours of back and forth between the customer and developer.

Ultimately, the developer determines that the issue is on a single URL. This leads the developer to look into a log file to try to understand when and where this is happening. The developer finds one log line that has the stack trace with this error message: "The request parameter is invalid." This provides a clue that leads the developer to the line of code that needs to be checked.

The developer runs git blame on the file, which identifies the code's original author. The author joins the investigation squad. A few hours later, the squad figures out the cause of the issue and how they can fix it. They release a new build, and they ask customer support to check in with the customer to see if that customer is still experiencing the problem. By that point, the customer has gone to bed. Now the team must wait until tomorrow morning to get feedback.

That Delays Issue Resolution and Doesn't Work at Scale

The example above illustrates that troubleshooting for bugs and errors is still manual. That results in slow mean time to awareness (MTTA) and mean time to repair (MTTR).

Traditional troubleshooting tools also don't scale. That's a big problem because it prevents developer teams from moving quickly, whether they are working on shipping new releases, creating new features or even just contending with tech debt.

Most Observability Solutions Fall Short - Leaving Customers to Report Problems

Nearly half (46%) of developers said they have error monitoring solutions. But while most tools will tell you what's broken, they won't provide the context needed to understand issues and prioritize fixes. This helps explain why a whopping 88% of developers said that they only find out about bugs and errors from user complaints reported through the app or via social media.

Part of the problem is that developers frequently use tools which focus on system metrics and logging to solve challenges that address whether or not an app is working — and if not, why not. Modern observability tools aim to answer such questions as: Which microservice latency is causing 502s or which line of code is causing an elevated error rate?

But observability tools create problems of their own. For example, they generate too much noise, which leads to an inability to automate. That, in turn, results in slower triaging, fixes and remediation. The bottom line is that the process is still far too manual, slow, and not scalable.

Continuous Code Improvement Enables Fast Understanding and Action

What's really needed is more contextual information to find the root cause of errors, faster. Grouping together similar root causes also can alleviate alert fatigue. This enables developers to easily identify the source of bugs and errors — and resolve issues before customers complain.

This is now possible using continuous code improvement, which enables developers to observe and act on issues — often before customers are even aware that such problems exist.

Continuous code improvement also makes developers more productive because they can now spend less time debugging and more time building innovative solutions that add new value.

Cory Virok is CTO and Co-Founder of Rollbar
Share this

The Latest

March 04, 2024

This year's Super Bowl drew in viewership of nearly 124 million viewers and made history as the most-watched live broadcast event since the 1969 moon landing. To support this spike in viewership, streaming companies like YouTube TV, Hulu and Paramount+ began preparing their IT infrastructure months in advance to ensure an exceptional viewer experience without outages or major interruptions. New Relic conducted a survey to understand the importance of a seamless viewing experience and the impact of outages during major streaming events such as the Super Bowl ...

March 01, 2024

As organizations continue to navigate the complexities of the digital era, which has been marked by exponential advancements in AI and technology, the strategic deployment of modern, practical applications has become indispensable for sustaining competitive advantage and realizing business goals. The Info-Tech Research Group report, Applications Priorities 2024, explores the following five initiatives for emerging and leading-edge technologies and practices that can enable IT and applications leaders to optimize their application portfolio and improve on capabilities needed to meet the ambitions of their organizations ...

February 29, 2024

Despite the growth in popularity of artificial intelligence (AI) and ML across a number of industries, there is still a huge amount of unrealized potential, with many businesses playing catch-up and still planning how ML solutions can best facilitate processes. Further progression could be limited without investment in specialized technical teams to drive development and integration ...

February 28, 2024

With over 200 streaming services to choose from, including multiple platforms featuring similar types of entertainment, users have little incentive to remain loyal to any given platform if it exhibits performance issues. Big names in streaming like Hulu, Amazon Prime and HBO Max invest thousands of hours into engineering observability and closed-loop monitoring to combat infrastructure and application issues, but smaller platforms struggle to remain competitive without access to the same resources ...

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...