To Unlock the Power of AIOps for Digital Transformation, Choose the Right Platform and Use Cases
April 20, 2022

Ritu Dubey
Digitate

Share this

The digital transformation bandwagon is a crowded one, with enterprises of all kinds heeding the call to modernize. The pace has only quickened in a post-pandemic age of enhanced digital collaboration and remote work. Nonetheless, 70% of digital transformation projects fall short of their goals, as organizations struggle to implement complex new technologies across the enterprise.

Fortunately, businesses can leverage AI and automation to better manage the speed, scale and complexity of the changes that come with digital transformation. In particular, artificial intelligence for IT operations (or AIOps) platforms can be a game changer. AIOps solutions use machine learning to connect and contextualize operational data for decision support or even auto-resolution of issues. This simplifies and streamlines the transformation journey, especially as the enterprise scales up to larger and larger operations.

The benefits of automation and AIOps can only be realized, however, if companies choose solutions that put the power within reach — ones that package up the complexities and make AIOps accessible to users. And even then, teams must decide which business challenges to target with these solutions. Let's take a closer look at how to navigate these decisions about the solutions and use cases that can best leverage AI for maximum impact in the digital transformation journey.

Finding the Right Automation Approach

Thousands of organizations in every part of the world see the advantages of AI-driven applications to streamline their IT and business operations. A "machine-first" approach frees staff from large portions of tedious, manual tasks while reducing risk and boosting output. AIOps for decision support and automated issue resolution in the IT department can further add to the value derived from AI in an organization's digital transformation.

Yet conversations with customers and prospects invariably touch on a shared complaint: Enterprise leaders know AI is a powerful ally in the digital transformation journey, but the technology can seem overwhelming and takes too long to scope and shop for all the components. They're looking for vendors to offer easier "on-ramps" to digital transformation. They want SaaS options and the availability of quick-install packages that feature just the functions that address a specific need or use case to leap into their intelligent automation journey.

Ultimately, a highly effective approach for leveraging AI in digital transformation involves so-called Out of the Box (OOTB) solutions that package up the complexity as pre-built knowledge that's tailored for specific kinds of use cases that matter most to the organization.

Choosing the Right Use Cases

Digital transformations are paradoxical in that you're modernizing the whole organization over the course of time, but it's impossible to "boil the ocean" and do it all at once. That's why it's so important to choose highly strategic and impactful use cases to get the ball rolling, demonstrate early wins, and then expand more broadly across the enterprise over time.

OOTB solutions can help pare down the complexity. But it is just as important to choose the right use cases to apply such solutions. Even companies that know automation and AIOps are necessary to optimize and scale their systems can struggle with exactly where to apply them in the enterprise to reap the most value.

By way of a cheat sheet, here are four key areas that are ripe for transformation with AI, and where the value of AIOps solutions will shine through most clearly in the form of operational and revenue gains:

IT incident and event management — A robust AIOps solution can prevent outages and enhance event governance via predictive intelligence and autonomous event management. Once implemented, such a solution can render a 360° view of all alerts across all enterprise technology stacks — leveraging machine learning to remove unwanted event noise and autonomously resolve business-critical issues.

Business health monitoring — A proactive AI-driven monitoring solution can manage the health of critical processes and business transactions, such as for the retail industry, for enhanced business continuity and revenue assurance. AI-powered diagnosis techniques can continually check the health of retail stores and e-commerce sites and automatically diagnose and resolve unhealthy components.

Business SLA predictions — AI can be used to predict delays in business processes, give ahead-of-time notifications and provide recommendations to prevent outages and Service Level Agreement (SLA) violations. Such a platform can be configured for automated monitoring, with timely anomaly detection and alerts across the entire workload ecosystem.

IDoc management — Intermediate Document (IDoc) management breakdowns can slow progress in transferring data or information from SAP to other systems and vice versa. An AI platform with intelligent automation techniques can identify, prioritize, and then autonomously resolve issues across the entire IDoc landscape — thereby minimizing risk, optimizing supply chain performance, and enhancing business continuity.

Conclusion

Organizations pursuing digital transformation are increasingly benefiting from enhanced AI-driven capabilities like AIOps that bring new levels of IT and business operations agility to advanced, multi-cloud environments. As these options become more widespread, enterprises at all stages of the digital journey are learning the basic formula for maximizing the return on these technology investments: They're solving the complexity problem with SaaS-based, pre-packaged solutions; and they're becoming more strategic in selecting use cases ideally suited for AIOps and the power of machine learning.

Ritu Dubey is Head of Sales and Market Development, Europe, at Digitate
Share this

The Latest

June 29, 2022

When it comes to AIOps predictions, there's no question of AI's value in predictive intelligence and faster problem resolution for IT teams. In fact, Gartner has reported that there is no future for IT Operations without AIOps. So, where is AIOps headed in five years? Here's what the vendors and thought leaders in the AIOps space had to share ...

June 27, 2022

A new study by OpsRamp on the state of the Managed Service Providers (MSP) market concludes that MSPs face a market of bountiful opportunities but must prepare for this growth by embracing complex technologies like hybrid cloud management, root cause analysis and automation ...

June 27, 2022

Hybrid work adoption and the accelerated pace of digital transformation are driving an increasing need for automation and site reliability engineering (SRE) practices, according to new research. In a new survey almost half of respondents (48.2%) said automation is a way to decrease Mean Time to Resolution/Repair (MTTR) and improve service management ...

June 23, 2022

Digital businesses don't invest in monitoring for monitoring's sake. They do it to make the business run better. Every dollar spent on observability — every hour your team spends using monitoring tools or responding to what they reveal — should tie back directly to business outcomes: conversions, revenues, brand equity. If they don't? You might be missing the forest for the trees ...

June 22, 2022

Every day, companies are missing customer experience (CX) "red flags" because they don't have the tools to observe CX processes or metrics. Even basic errors or defects in automated customer interactions are left undetected for days, weeks or months, leading to widespread customer dissatisfaction. In fact, poor CX and digital technology investments are costing enterprises billions of dollars in lost potential revenue ...

June 21, 2022

Organizations are moving to microservices and cloud native architectures at an increasing pace. The primary incentive for these transformation projects is typically to increase the agility and velocity of software release and product innovation. These dynamic systems, however, are far more complex to manage and monitor, and they generate far higher data volumes ...

June 16, 2022

Global IT teams adapted to remote work in 2021, resolving employee tickets 23% faster than the year before as overall resolution time for IT tickets went down by 7 hours, according to the Freshservice Service Management Benchmark Report from Freshworks ...

June 15, 2022

Once upon a time data lived in the data center. Now data lives everywhere. All this signals the need for a new approach to data management, a next-gen solution ...

June 14, 2022

Findings from the 2022 State of Edge Messaging Report from Ably and Coleman Parkes Research show that most organizations (65%) that have built edge messaging capabilities in house have experienced an outage or significant downtime in the last 12-18 months. Most of the current in-house real-time messaging services aren't cutting it ...

June 13, 2022
Today's users want a complete digital experience when dealing with a software product or system. They are not content with the page load speeds or features alone but want the software to perform optimally in an omnichannel environment comprising multiple platforms, browsers, devices, and networks. This calls into question the role of load testing services to check whether the given software under testing can perform optimally when subjected to peak load ...