To Unlock the Power of AIOps for Digital Transformation, Choose the Right Platform and Use Cases
April 20, 2022

Ritu Dubey
Digitate

Share this

The digital transformation bandwagon is a crowded one, with enterprises of all kinds heeding the call to modernize. The pace has only quickened in a post-pandemic age of enhanced digital collaboration and remote work. Nonetheless, 70% of digital transformation projects fall short of their goals, as organizations struggle to implement complex new technologies across the enterprise.

Fortunately, businesses can leverage AI and automation to better manage the speed, scale and complexity of the changes that come with digital transformation. In particular, artificial intelligence for IT operations (or AIOps) platforms can be a game changer. AIOps solutions use machine learning to connect and contextualize operational data for decision support or even auto-resolution of issues. This simplifies and streamlines the transformation journey, especially as the enterprise scales up to larger and larger operations.

The benefits of automation and AIOps can only be realized, however, if companies choose solutions that put the power within reach — ones that package up the complexities and make AIOps accessible to users. And even then, teams must decide which business challenges to target with these solutions. Let's take a closer look at how to navigate these decisions about the solutions and use cases that can best leverage AI for maximum impact in the digital transformation journey.

Finding the Right Automation Approach

Thousands of organizations in every part of the world see the advantages of AI-driven applications to streamline their IT and business operations. A "machine-first" approach frees staff from large portions of tedious, manual tasks while reducing risk and boosting output. AIOps for decision support and automated issue resolution in the IT department can further add to the value derived from AI in an organization's digital transformation.

Yet conversations with customers and prospects invariably touch on a shared complaint: Enterprise leaders know AI is a powerful ally in the digital transformation journey, but the technology can seem overwhelming and takes too long to scope and shop for all the components. They're looking for vendors to offer easier "on-ramps" to digital transformation. They want SaaS options and the availability of quick-install packages that feature just the functions that address a specific need or use case to leap into their intelligent automation journey.

Ultimately, a highly effective approach for leveraging AI in digital transformation involves so-called Out of the Box (OOTB) solutions that package up the complexity as pre-built knowledge that's tailored for specific kinds of use cases that matter most to the organization.

Choosing the Right Use Cases

Digital transformations are paradoxical in that you're modernizing the whole organization over the course of time, but it's impossible to "boil the ocean" and do it all at once. That's why it's so important to choose highly strategic and impactful use cases to get the ball rolling, demonstrate early wins, and then expand more broadly across the enterprise over time.

OOTB solutions can help pare down the complexity. But it is just as important to choose the right use cases to apply such solutions. Even companies that know automation and AIOps are necessary to optimize and scale their systems can struggle with exactly where to apply them in the enterprise to reap the most value.

By way of a cheat sheet, here are four key areas that are ripe for transformation with AI, and where the value of AIOps solutions will shine through most clearly in the form of operational and revenue gains:

IT incident and event management — A robust AIOps solution can prevent outages and enhance event governance via predictive intelligence and autonomous event management. Once implemented, such a solution can render a 360° view of all alerts across all enterprise technology stacks — leveraging machine learning to remove unwanted event noise and autonomously resolve business-critical issues.

Business health monitoring — A proactive AI-driven monitoring solution can manage the health of critical processes and business transactions, such as for the retail industry, for enhanced business continuity and revenue assurance. AI-powered diagnosis techniques can continually check the health of retail stores and e-commerce sites and automatically diagnose and resolve unhealthy components.

Business SLA predictions — AI can be used to predict delays in business processes, give ahead-of-time notifications and provide recommendations to prevent outages and Service Level Agreement (SLA) violations. Such a platform can be configured for automated monitoring, with timely anomaly detection and alerts across the entire workload ecosystem.

IDoc management — Intermediate Document (IDoc) management breakdowns can slow progress in transferring data or information from SAP to other systems and vice versa. An AI platform with intelligent automation techniques can identify, prioritize, and then autonomously resolve issues across the entire IDoc landscape — thereby minimizing risk, optimizing supply chain performance, and enhancing business continuity.

Conclusion

Organizations pursuing digital transformation are increasingly benefiting from enhanced AI-driven capabilities like AIOps that bring new levels of IT and business operations agility to advanced, multi-cloud environments. As these options become more widespread, enterprises at all stages of the digital journey are learning the basic formula for maximizing the return on these technology investments: They're solving the complexity problem with SaaS-based, pre-packaged solutions; and they're becoming more strategic in selecting use cases ideally suited for AIOps and the power of machine learning.

Ritu Dubey is Head of Sales and Market Development, Europe, at Digitate
Share this

The Latest

February 02, 2023

As organizations continue to adapt to a post-pandemic surge in cloud-based productivity, the 2023 State of the Network report from Viavi Solutions details how end-user awareness remains critical and explores the benefits — and challenges — of cloud and off-premises network modernization initiatives ...

February 01, 2023

In the network engineering world, many teams have yet to realize the immense benefit real-time collaboration tools can bring to a successful automation strategy. By integrating a collaboration platform into a network automation strategy — and taking advantage of being able to share responses, files, videos and even links to applications and device statuses — network teams can leverage these tools to manage, monitor and update their networks in real time, and improve the ways in which they manage their networks ...

January 31, 2023

A recent study revealed only an alarming 5% of IT decision makers who report having complete visibility into employee adoption and usage of company-issued applications, demonstrating they are often unknowingly careless when it comes to software investments that can ultimately be costly in terms of time and resources ...

January 30, 2023

Everyone has visibility into their multi-cloud networking environment, but only some are happy with what they see. Unfortunately, this continues a trend. According to EMA's latest research, most network teams have some end-to-end visibility across their multi-cloud networks. Still, only 23.6% are fully satisfied with their multi-cloud network monitoring and troubleshooting capabilities ...

January 26, 2023

As enterprises work to implement or improve their observability practices, tool sprawl is a very real phenomenon ... Tool sprawl can and does happen all across the organization. In this post, though, we'll focus specifically on how and why observability efforts often result in tool sprawl, some of the possible negative consequences of that sprawl, and we'll offer some advice on how to reduce or even avoid sprawl ...

January 25, 2023

As companies generate more data across their network footprints, they need network observability tools to help find meaning in that data for better decision-making and problem solving. It seems many companies believe that adding more tools leads to better and faster insights ... And yet, observability tools aren't meeting many companies' needs. In fact, adding more tools introduces new challenges ...

January 24, 2023

Driven by the need to create scalable, faster, and more agile systems, businesses are adopting cloud native approaches. But cloud native environments also come with an explosion of data and complexity that makes it harder for businesses to detect and remediate issues before everything comes to a screeching halt. Observability, if done right, can make it easier to mitigate these challenges and remediate incidents before they become major customer-impacting problems ...

January 23, 2023

The spiraling cost of energy is forcing public cloud providers to raise their prices significantly. A recent report by Canalys predicted that public cloud prices will jump by around 20% in the US and more than 30% in Europe in 2023. These steep price increases will test the conventional wisdom that moving to the cloud is a cheap computing alternative ...

January 19, 2023

Despite strong interest over the past decade, the actual investment in DX has been recent. While 100% of enterprises are now engaged with DX in some way, most (77%) have begun their DX journey within the past two years. And most are early stage, with a fourth (24%) at the discussion stage and half (49%) currently transforming. Only 27% say they have finished their DX efforts ...

January 18, 2023

While most thought that distraction and motivation would be the main contributors to low productivity in a work-from-home environment, many organizations discovered that it was gaps in their IT systems that created some of the most significant challenges ...