To Unlock the Power of AIOps for Digital Transformation, Choose the Right Platform and Use Cases
April 20, 2022

Ritu Dubey
Digitate

Share this

The digital transformation bandwagon is a crowded one, with enterprises of all kinds heeding the call to modernize. The pace has only quickened in a post-pandemic age of enhanced digital collaboration and remote work. Nonetheless, 70% of digital transformation projects fall short of their goals, as organizations struggle to implement complex new technologies across the enterprise.

Fortunately, businesses can leverage AI and automation to better manage the speed, scale and complexity of the changes that come with digital transformation. In particular, artificial intelligence for IT operations (or AIOps) platforms can be a game changer. AIOps solutions use machine learning to connect and contextualize operational data for decision support or even auto-resolution of issues. This simplifies and streamlines the transformation journey, especially as the enterprise scales up to larger and larger operations.

The benefits of automation and AIOps can only be realized, however, if companies choose solutions that put the power within reach — ones that package up the complexities and make AIOps accessible to users. And even then, teams must decide which business challenges to target with these solutions. Let's take a closer look at how to navigate these decisions about the solutions and use cases that can best leverage AI for maximum impact in the digital transformation journey.

Finding the Right Automation Approach

Thousands of organizations in every part of the world see the advantages of AI-driven applications to streamline their IT and business operations. A "machine-first" approach frees staff from large portions of tedious, manual tasks while reducing risk and boosting output. AIOps for decision support and automated issue resolution in the IT department can further add to the value derived from AI in an organization's digital transformation.

Yet conversations with customers and prospects invariably touch on a shared complaint: Enterprise leaders know AI is a powerful ally in the digital transformation journey, but the technology can seem overwhelming and takes too long to scope and shop for all the components. They're looking for vendors to offer easier "on-ramps" to digital transformation. They want SaaS options and the availability of quick-install packages that feature just the functions that address a specific need or use case to leap into their intelligent automation journey.

Ultimately, a highly effective approach for leveraging AI in digital transformation involves so-called Out of the Box (OOTB) solutions that package up the complexity as pre-built knowledge that's tailored for specific kinds of use cases that matter most to the organization.

Choosing the Right Use Cases

Digital transformations are paradoxical in that you're modernizing the whole organization over the course of time, but it's impossible to "boil the ocean" and do it all at once. That's why it's so important to choose highly strategic and impactful use cases to get the ball rolling, demonstrate early wins, and then expand more broadly across the enterprise over time.

OOTB solutions can help pare down the complexity. But it is just as important to choose the right use cases to apply such solutions. Even companies that know automation and AIOps are necessary to optimize and scale their systems can struggle with exactly where to apply them in the enterprise to reap the most value.

By way of a cheat sheet, here are four key areas that are ripe for transformation with AI, and where the value of AIOps solutions will shine through most clearly in the form of operational and revenue gains:

IT incident and event management — A robust AIOps solution can prevent outages and enhance event governance via predictive intelligence and autonomous event management. Once implemented, such a solution can render a 360° view of all alerts across all enterprise technology stacks — leveraging machine learning to remove unwanted event noise and autonomously resolve business-critical issues.

Business health monitoring — A proactive AI-driven monitoring solution can manage the health of critical processes and business transactions, such as for the retail industry, for enhanced business continuity and revenue assurance. AI-powered diagnosis techniques can continually check the health of retail stores and e-commerce sites and automatically diagnose and resolve unhealthy components.

Business SLA predictions — AI can be used to predict delays in business processes, give ahead-of-time notifications and provide recommendations to prevent outages and Service Level Agreement (SLA) violations. Such a platform can be configured for automated monitoring, with timely anomaly detection and alerts across the entire workload ecosystem.

IDoc management — Intermediate Document (IDoc) management breakdowns can slow progress in transferring data or information from SAP to other systems and vice versa. An AI platform with intelligent automation techniques can identify, prioritize, and then autonomously resolve issues across the entire IDoc landscape — thereby minimizing risk, optimizing supply chain performance, and enhancing business continuity.

Conclusion

Organizations pursuing digital transformation are increasingly benefiting from enhanced AI-driven capabilities like AIOps that bring new levels of IT and business operations agility to advanced, multi-cloud environments. As these options become more widespread, enterprises at all stages of the digital journey are learning the basic formula for maximizing the return on these technology investments: They're solving the complexity problem with SaaS-based, pre-packaged solutions; and they're becoming more strategic in selecting use cases ideally suited for AIOps and the power of machine learning.

Ritu Dubey is Global Head of New Business Sales at Digitate
Share this

The Latest

June 01, 2023

The journey of maturing observability practices for users entails navigating peaks and valleys. Users have clearly witnessed the maturation of their monitoring capabilities, embraced DevOps practices, and adopted cloud and cloud-native technologies. Notwithstanding that, we witness the gradual increase of the Mean Time To Recovery (MTTR) for production issues year over year ...

May 31, 2023

Optimizing existing use of cloud is the top initiative — for the seventh year in a row, reported by 62% of respondents in the Flexera 2023 State of the Cloud Report ...

May 30, 2023

Gartner highlighted four trends impacting cloud, data center and edge infrastructure in 2023, as infrastructure and operations teams pivot to support new technologies and ways of working during a year of economic uncertainty ...

May 25, 2023

Developers need a tool that can be portable and vendor agnostic, given the advent of microservices. It may be clear an issue is occurring; what may not be clear is if it's part of a distributed system or the app itself. Enter OpenTelemetry, commonly referred to as OTel, an open-source framework that provides a standardized way of collecting and exporting telemetry data (logs, metrics, and traces) from cloud-native software ...

May 24, 2023

As SLOs grow in popularity their usage is becoming more mature. For example, 82% of respondents intend to increase their use of SLOs, and 96% have mapped SLOs directly to their business operations or already have a plan to, according to The State of Service Level Objectives 2023 from Nobl9 ...

May 23, 2023

Observability has matured beyond its early adopter position and is now foundational for modern enterprises to achieve full visibility into today's complex technology environments, according to The State of Observability 2023, a report released by Splunk in collaboration with Enterprise Strategy Group ...

May 22, 2023

Before network engineers even begin the automation process, they tend to start with preconceived notions that oftentimes, if acted upon, can hinder the process. To prevent that from happening, it's important to identify and dispel a few common misconceptions currently out there and how networking teams can overcome them. So, let's address the three most common network automation myths ...

May 18, 2023

Many IT organizations apply AI/ML and AIOps technology across domains, correlating insights from the various layers of IT infrastructure and operations. However, Enterprise Management Associates (EMA) has observed significant interest in applying these AI technologies narrowly to network management, according to a new research report, titled AI-Driven Networks: Leveling Up Network Management with AI/ML and AIOps ...

May 17, 2023

When it comes to system outages, AIOps solutions with the right foundation can help reduce the blame game so the right teams can spend valuable time restoring the impacted services rather than improving their MTTI score (mean time to innocence). In fact, much of today's innovation around ChatGPT-style algorithms can be used to significantly improve the triage process and user experience ...

May 16, 2023

Gartner identified the top 10 data and analytics (D&A) trends for 2023 that can guide D&A leaders to create new sources of value by anticipating change and transforming extreme uncertainty into new business opportunities ...