Transforming Log Management with Object Storage
February 07, 2022

Stela Udovicic
Era Software

Share this

Logs produced by your IT infrastructure contain hidden gems — information about performance, user behavior, and other data waiting to be discovered. Unlocking the value of the array of log data aggregated by organizations every day can be a gateway to uncovering all manner of efficiencies. Yet, the challenge of analyzing and managing the mountains of log data organizations have is growing more complex by the day.

Cloud adoption, application modernization, and other technology trends have put pressure on log management solutions to support a diverse infrastructure generating log data that can reach petabyte scale and beyond. As the volume of data spikes, the cost of ingesting, storing, and analyzing it does as well. Traditional log management solutions cannot keep pace with the demands of the environments many organizations are now responsible for, which forces IT teams to make decisions about log collection and retention that can hamper their ability to get the most value out of the data.

Whether they choose to buy or build their solution, the same challenges remain. The decision to develop their own solutions based on open-source tools brings new demands to allocate the engineering resources needed to maintain them. Homegrown or not, legacy architectures designed without the cloud in mind cannot handle the necessary volume of data.

This new reality requires a new approach, one that can handle the scalability, access, and analysis needs of the modern digital-minded enterprises.

A New Architecture for a New Day

Digital transformation has become more than just a buzzword; it is a concept that has touched essentially every aspect of business and IT operations. Log management is no exception. In the face of DevOps, cloud computing, and an ever-growing tsunami of structured and unstructured data, organizations have no choice but to adjust their approach to meet the needs of their increasingly cloud-first and hybrid infrastructure.

The explosion of data creates issues that cannot be solved by simply adding more storage, compute, or nodes. At certain scales, it simply becomes cost-prohibitive. The tactical impact of this reality is that it leaves insights that can be potentially gleaned from that data on the table. For example, we have seen some organizations place quotas on the logs for their DevOps teams, which can slow release cycles as developers wait for performance-related logs. This situation is a recipe for creating friction. Log management needs to be a service that reduces complexity, not an impediment to velocity or IT operations.

Increasing cost is not the only challenge facing log management for many organizations. The sheer amount of data can also make effective indexing impossible, further hurting historical data analysis and visibility. What organizations need is a way to index and analyze data in real-time and with the level of scalability they require. The larger the amount of data organizations want to regularly access is, the more capacity they will need for their hot storage tier and the higher the cost.

Object Storage Removes Scale and Cost Significant Barriers

In an ideal world, organizations would not have to make cost-driven decisions including setting quotas on what logs to send to cold storage. However, the reality many organizations face is one where compute and storage are tightly coupled, increasing the price tag attached to log management.

Separating storage and compute, however, gives organizations the scalability and flexibility to address the needs of their hybrid and cloud infrastructure. Object storage manages data as objects, eliminating the hierarchical file structure of traditional databases. Log management solutions built on top of object storage eliminate the need to manage data within storage clusters or resize it manually. Each object is organized using unique identifiers and includes customizable metadata that allows for much richer analysis. All data can be accessed via an API or UI making objects easier to query and find, and queries, reads, and writes can happen almost instantaneously.

This approach makes it easier for organizations to search out — and quickly get value from — relevant information and historical logs. The result is faster, highly optimized search queries that deliver accurate insights for high-volume log data. This capability should be further supported by analytics-driven alerting that enables organizations to proactively detect and resolve any application, infrastructure, operational, or code issue quickly. By utilizing machine learning, log management solutions can augment troubleshooting efforts by IT teams, uncovering problems by correlating and examining information about the logs in your environment.

These facts are only scratching the surface in the ways next-generation log management platforms can be transformative. Organizations need to feel secure that their log management strategy will not crumble under the stress of their IT environment. Solutions that are built using cloud-native constructs can enable each storage tier to scale up or down as needed, addressing the scalability and elasticity concerns created by the massive amounts of data from containers, microservices, Internet-of-Things (IoT) devices, and other sources.

All this, of course, must be done without compromising data hygiene. The durability of object storage is typically touted as 11 nines durable (99.999999999), which is achieved through redundancy and the use of metadata to identify any corruption. Through the use of synchronized caching, log management platforms can ensure the creation and maintenance of a single source of truth for log data throughout the environment.

Transforming Log Management

In the digital world, yesterday's solutions almost always reach a point where they can no longer solve today's problems. And tomorrow's problems? Not likely.

To address the challenges posed by today's complex IT environments requires rethinking log management for cloud-scale infrastructure. Whatever approach organizations adopt needs to deliver the flexibility and scalability necessary to deal with massive amounts of data generated. Every piece of log data can have a value if properly analyzed but realizing that potential may require IT leaders to rethink how log management is architected.

Observability has become a cornerstone of modern IT organizations, but the biggest challenge is to keep data organized so you can retrieve it efficiently. Legacy approaches have reached their breaking point. As data volumes continue to grow, the key to unlocking business value from that data will reside in adopting a strategy optimized for the cloud and the scalability needs of the modern business. Only when enterprises solve the log management conundrum will they be able to fully take advantage to improve operational efficiency, improve customer experiences to build loyalty and deliver new revenue streams to increase profitability.

Stela Udovicic is SVP, Marketing, at Era Software
Share this

The Latest

February 29, 2024

Despite the growth in popularity of artificial intelligence (AI) and ML across a number of industries, there is still a huge amount of unrealized potential, with many businesses playing catch-up and still planning how ML solutions can best facilitate processes. Further progression could be limited without investment in specialized technical teams to drive development and integration ...

February 28, 2024

With over 200 streaming services to choose from, including multiple platforms featuring similar types of entertainment, users have little incentive to remain loyal to any given platform if it exhibits performance issues. Big names in streaming like Hulu, Amazon Prime and HBO Max invest thousands of hours into engineering observability and closed-loop monitoring to combat infrastructure and application issues, but smaller platforms struggle to remain competitive without access to the same resources ...

February 27, 2024

Generative AI has recently experienced unprecedented dramatic growth, making it one of the most exciting transformations the tech industry has seen in some time. However, this growth also poses a challenge for tech leaders who will be expected to deliver on the promise of new technology. In 2024, delivering tangible outcomes that meet the potential of AI, and setting up incubator projects for the future will be key tasks ...

February 26, 2024

SAP is a tool for automating business processes. Managing SAP solutions, especially with the shift to the cloud-based S/4HANA platform, can be intricate. To explore the concerns of SAP users during operational transformations and automation, a survey was conducted in mid-2023 by Digitate and Americas' SAP Users' Group ...

February 22, 2024

Some companies are just starting to dip their toes into developing AI capabilities, while (few) others can claim they have built a truly AI-first product. Regardless of where a company is on the AI journey, leaders must understand what it means to build every aspect of their product with AI in mind ...

February 21, 2024

Generative AI will usher in advantages within various industries. However, the technology is still nascent, and according to the recent Dynatrace survey there are many challenges and risks that organizations need to overcome to use this technology effectively ...

February 20, 2024

In today's digital era, monitoring and observability are indispensable in software and application development. Their efficacy lies in empowering developers to swiftly identify and address issues, enhance performance, and deliver flawless user experiences. Achieving these objectives requires meticulous planning, strategic implementation, and consistent ongoing maintenance. In this blog, we're sharing our five best practices to fortify your approach to application performance monitoring (APM) and observability ...

February 16, 2024

In MEAN TIME TO INSIGHT Episode 3, Shamus McGillicuddy, VP of Research, Network Infrastructure and Operations, at Enterprise Management Associates (EMA) discusses network security with Chris Steffen, VP of Research Covering Information Security, Risk, and Compliance Management at EMA ...

February 15, 2024

In a time where we're constantly bombarded with new buzzwords and technological advancements, it can be challenging for businesses to determine what is real, what is useful, and what they truly need. Over the years, we've witnessed the rise and fall of various tech trends, such as the promises (and fears) of AI becoming sentient and replacing humans to the declaration that data is the new oil. At the end of the day, one fundamental question remains: How can companies navigate through the tech buzz and make informed decisions for their future? ...

February 14, 2024

We increasingly see companies using their observability data to support security use cases. It's not entirely surprising given the challenges that organizations have with legacy SIEMs. We wanted to dig into this evolving intersection of security and observability, so we surveyed 500 security professionals — 40% of whom were either CISOs or CSOs — for our inaugural State of Security Observability report ...