Universal Monitoring Crimes and What to Do About Them - Part 1
May 22, 2018

Leon Adato
SolarWinds

Share this

Monitoring is a critical aspect of any data center operation, yet it often remains the black sheep of an organization's IT strategy: an afterthought rather than a core competency. Because of this, many enterprises have a monitoring solution that appears to have been built by a flock of "IT seagulls" — technicians who swoop in, drop a smelly and offensive payload, and swoop out. Over time, the result is layer upon layer of offensive payloads that are all in the same general place (your monitoring solution) but have no coherent strategy or integration.

Believe it or not, this is a salvageable scenario. By applying a few basic techniques and monitoring discipline, you can turn a disorganized pile of noise into a monitoring solution that provides actionable insight. For the purposes of this piece, let's assume you've at least implemented some type of monitoring solution within your environment.

At its core, the principle of monitoring as a foundational IT discipline is designed to help IT professionals escape the short-term, reactive nature of administration, often caused by insufficient monitoring, and become more proactive and strategic. All too often, however, organizations are instead bogged down by monitoring systems that are improperly tuned — or not tuned at all — for their environment and business needs. This results in unnecessary or incorrect alerts that introduce more chaos and noise than order and insight, and as a result, cause your staff to value monitoring even less.

So, to help your organization increase data center efficiency and get the most benefit out of your monitoring solutions, here are the top five universal monitoring crimes and what you can do about them:

1. Fixed thresholds

Monitoring systems that trigger any type of alert at a fixed value for a group of devices are the "weak tea" of solutions. While general thresholds can be established, it is statistically impossible that every single device is going to adhere to the same one, and extremely improbable that even a majority will.

Even a single server has utilization that varies from day to day. A server that usually runs at 50 percent CPU, for example, but spikes to 95 percent at the end of the month is perfectly normal — but fixed thresholds can cause this spike to trigger. The result is that many organizations create multiple versions of the same alert (CPU Alert for Windows IIS-DMZ; CPU Alert for Windows IIS-core; CPU Alert for Windows Exchange CAS, and so on). And even then, fixed thresholds usually throw more false positives than anyone wants.

What to do about it:

■ GOOD: Enable per-device (and per-service) thresholds. Whether you do this within the tool or via customizations, you should ultimately be able to have a specific threshold for each device so that machines that have a specific threshold trigger at the correct time, and those that do not get the default.

■ BETTER: Use existing monitoring data to establish baselines for "normal" and then trigger when usage deviates from that baseline. Note that you may need to consider how to address edge cases that may require a second condition to help define when a threshold is triggered.

2. Lack of monitoring system oversight

While it's certainly important to have a tool or set of tools that monitor and alert on mission-critical systems, it's also important to have some sort of system in place to identify problems within the monitoring solution itself.

What to do about it: Set up a separate instance of a monitoring solution that keeps track of the primary, or production, monitoring system. It can be another copy of the same tool or tools you are using in production, or a separate solution, such as open source, vendor-provided, etc.

For another option to address this, see the discussion on lab and test environments in Part 2 of this blog.

3. Instant alerts

There are endless reasons why instant alerts — when your monitoring system triggers alerts as soon as a condition is detected — can cause chaos in your data center. For one thing, monitoring systems are not infallible and may detect "false positive" alerts that don't truly require a remediation response. For another, it's not uncommon for problems to appear for a moment and then disappear. Still some other problems aren't actionable until they've persisted for a certain amount of time. You get the idea.

What to do about it: Build a time delay into your monitoring system's trigger logic where a CPU alert, for example, would need to have all of the specified conditions persist for something like 10 minutes before any action would be needed. Spikes lasting longer than 10 minutes would require more direct intervention while anything less represents a temporary spike in activity that doesn't necessarily indicate a true problem.

Read Universal Monitoring Crimes and What to Do About Them - Part 2, for more monitoring tips.

Leon Adato is a Head Geek at SolarWinds
Share this

The Latest

October 19, 2018

APM is becoming more complex as the days go by. Server virtualization and cloud-based systems with containers and orchestration layers are part of this growing complexity, especially as the number of data sources increases and continues to change dynamically. To keep up with this changing environment, you will need to automate as many of your systems as possible. Open APIs can be an effective way to combat this scenario ...

October 18, 2018

Two years ago, Amazon, Comcast, Twitter and Netflix were effectively taken off the Internet for multiple hours by a DDoS attack because they all relied on a single DNS provider. Can it happen again? ...

October 17, 2018

We're seeing artificial intelligence for IT operations or "AIOps" take center stage in the IT industry. If AIOps hasn't been on your horizon yet, look closely and expect it soon. So what can we expect from automation and AIOps as it becomes more commonplace? ...

October 15, 2018

Use of artificial intelligence (AI) in digital commerce is generally considered a success, according to a survey by Gartner, Inc. About 70 percent of digital commerce organizations surveyed report that their AI projects are very or extremely successful ...

October 12, 2018

Most organizations are adopting or considering adopting machine learning due to its benefits, rather than with the intention to cut people’s jobs, according to the Voice of the Enterprise (VoTE): AI & Machine Learning – Adoption, Drivers and Stakeholders 2018 survey conducted by 451 Research ...

October 11, 2018

AI (Artificial Intelligence) and ML (Machine Learning) are the number one strategic enterprise IT investment priority in 2018 (named by 33% of enterprises), taking the top spot from container management (28%), and clearly leaving behind DevOps pipeline automation (13%), according to new EMA research ...

October 09, 2018

Although Windows and Linux were historically viewed as competitors, modern IT advancements have ensured much needed network availability between these ecosystems for redundancy, fault tolerance, and competitive advantage. Software that offers intelligent availability enables the dynamic transfer of data and its processing to the best execution environment for any given purpose. That may be on-premises, in the cloud, in containers, in Windows, or in Linux ...

October 04, 2018

TEKsystems released the results of its 2018 Forecast Reality Check, measuring the current impact of market conditions on IT initiatives, hiring, salaries and skill needs. Here are some key results ...

October 02, 2018

Retailers that have readily adopted digital technologies have experienced a 6% CAGR revenue growth over a 3-year period, while other retailers that have explored digital without a full commitment to broad implementation experienced flat growth over the same period ...

October 01, 2018

As businesses look to capitalize on the benefits offered by the cloud, we've seen the rise of the DevOps practice which, in common with the cloud, offers businesses the advantages of greater agility, speed, quality and efficiency. However, achieving this agility requires end-to-end visibility based on continuous monitoring of the developed applications as part of the software development life cycle ...