Universal Monitoring Crimes and What to Do About Them - Part 1
May 22, 2018

Leon Adato
SolarWinds

Share this

Monitoring is a critical aspect of any data center operation, yet it often remains the black sheep of an organization's IT strategy: an afterthought rather than a core competency. Because of this, many enterprises have a monitoring solution that appears to have been built by a flock of "IT seagulls" — technicians who swoop in, drop a smelly and offensive payload, and swoop out. Over time, the result is layer upon layer of offensive payloads that are all in the same general place (your monitoring solution) but have no coherent strategy or integration.

Believe it or not, this is a salvageable scenario. By applying a few basic techniques and monitoring discipline, you can turn a disorganized pile of noise into a monitoring solution that provides actionable insight. For the purposes of this piece, let's assume you've at least implemented some type of monitoring solution within your environment.

At its core, the principle of monitoring as a foundational IT discipline is designed to help IT professionals escape the short-term, reactive nature of administration, often caused by insufficient monitoring, and become more proactive and strategic. All too often, however, organizations are instead bogged down by monitoring systems that are improperly tuned — or not tuned at all — for their environment and business needs. This results in unnecessary or incorrect alerts that introduce more chaos and noise than order and insight, and as a result, cause your staff to value monitoring even less.

So, to help your organization increase data center efficiency and get the most benefit out of your monitoring solutions, here are the top five universal monitoring crimes and what you can do about them:

1. Fixed thresholds

Monitoring systems that trigger any type of alert at a fixed value for a group of devices are the "weak tea" of solutions. While general thresholds can be established, it is statistically impossible that every single device is going to adhere to the same one, and extremely improbable that even a majority will.

Even a single server has utilization that varies from day to day. A server that usually runs at 50 percent CPU, for example, but spikes to 95 percent at the end of the month is perfectly normal — but fixed thresholds can cause this spike to trigger. The result is that many organizations create multiple versions of the same alert (CPU Alert for Windows IIS-DMZ; CPU Alert for Windows IIS-core; CPU Alert for Windows Exchange CAS, and so on). And even then, fixed thresholds usually throw more false positives than anyone wants.

What to do about it:

■ GOOD: Enable per-device (and per-service) thresholds. Whether you do this within the tool or via customizations, you should ultimately be able to have a specific threshold for each device so that machines that have a specific threshold trigger at the correct time, and those that do not get the default.

■ BETTER: Use existing monitoring data to establish baselines for "normal" and then trigger when usage deviates from that baseline. Note that you may need to consider how to address edge cases that may require a second condition to help define when a threshold is triggered.

2. Lack of monitoring system oversight

While it's certainly important to have a tool or set of tools that monitor and alert on mission-critical systems, it's also important to have some sort of system in place to identify problems within the monitoring solution itself.

What to do about it: Set up a separate instance of a monitoring solution that keeps track of the primary, or production, monitoring system. It can be another copy of the same tool or tools you are using in production, or a separate solution, such as open source, vendor-provided, etc.

For another option to address this, see the discussion on lab and test environments in Part 2 of this blog.

3. Instant alerts

There are endless reasons why instant alerts — when your monitoring system triggers alerts as soon as a condition is detected — can cause chaos in your data center. For one thing, monitoring systems are not infallible and may detect "false positive" alerts that don't truly require a remediation response. For another, it's not uncommon for problems to appear for a moment and then disappear. Still some other problems aren't actionable until they've persisted for a certain amount of time. You get the idea.

What to do about it: Build a time delay into your monitoring system's trigger logic where a CPU alert, for example, would need to have all of the specified conditions persist for something like 10 minutes before any action would be needed. Spikes lasting longer than 10 minutes would require more direct intervention while anything less represents a temporary spike in activity that doesn't necessarily indicate a true problem.

Read Universal Monitoring Crimes and What to Do About Them - Part 2, for more monitoring tips.

Leon Adato is a Head Geek at SolarWinds
Share this

The Latest

September 23, 2021

The Internet played a greater role than ever in supporting enterprise productivity over the past year-plus, as newly remote workers logged onto the job via residential links that, it turns out, left much to be desired in terms of enabling work ...

September 22, 2021

The world's appetite for cloud services has increased but now, more than 18 months since the beginning of the pandemic, organizations are assessing their cloud spend and trying to better understand the IT investments that were made under pressure. This is a huge challenge in and of itself, with the added complexity of embracing hybrid work ...

September 21, 2021

After a year of unprecedented challenges and change, tech pros responding to this year’s survey, IT Pro Day 2021 survey: Bring IT On from SolarWinds, report a positive perception of their roles and say they look forward to what lies ahead ...

September 20, 2021

One of the key performance indicators for IT Ops is MTTR (Mean-Time-To-Resolution). MTTR essentially measures the length of your incident management lifecycle: from detection; through assignment, triage and investigation; to remediation and resolution. IT Ops teams strive to shorten their incident management lifecycle and lower their MTTR, to meet their SLAs and maintain healthy infrastructures and services. But that's often easier said than done, with incident triage being a key factor in that challenge ...

September 16, 2021

Achieve more with less. How many of you feel that pressure — or, even worse, hear those words — trickle down from leadership? The reality is that overworked and under-resourced IT departments will only lead to chronic errors, missed deadlines and service assurance failures. After all, we're only human. So what are overburdened IT departments to do? Reduce the human factor. In a word: automate ...

September 15, 2021

On average, data innovators release twice as many products and increase employee productivity at double the rate of organizations with less mature data strategies, according to the State of Data Innovation report from Splunk ...

September 14, 2021

While 90% of respondents believe observability is important and strategic to their business — and 94% believe it to be strategic to their role — just 26% noted mature observability practices within their business, according to the 2021 Observability Forecast ...

September 13, 2021

Let's explore a few of the most prominent app success indicators and how app engineers can shift their development strategy to better meet the needs of today's app users ...

September 09, 2021

Business enterprises aiming at digital transformation or IT companies developing new software applications face challenges in developing eye-catching, robust, fast-loading, mobile-friendly, content-rich, and user-friendly software. However, with increased pressure to reduce costs and save time, business enterprises often give a short shrift to performance testing services ...

September 08, 2021

DevOps, SRE and other operations teams use observability solutions with AIOps to ingest and normalize data to get visibility into tech stacks from a centralized system, reduce noise and understand the data's context for quicker mean time to recovery (MTTR). With AI using these processes to produce actionable insights, teams are free to spend more time innovating and providing superior service assurance. Let's explore AI's role in ingestion and normalization, and then dive into correlation and deduplication too ...