Unravel for Azure Databricks Includes New Features
February 25, 2020
Share this

Unravel Data introduced new migration, cost analytics and architectural mapping capabilities for Unravel for Azure Databricks, which is now generally available from Unravel and in the Azure Marketplace.

The move further solidifies Unravel’s mission to support modern data workloads wherever they exist, whether on-premises, in the public cloud or a hybrid setting.

“With more and more big data deployments moving to the public cloud, Unravel has spent the last several years helping to simplify the process of cloud migration as well as improving the management and optimization of modern data workloads once in the cloud. We have recently introduced platforms for all major public cloud platforms,” said Bala Venkatrao, Chief Product Officer, Unravel Data. “This release, highlighted by the industry’s only slice and dice migration capabilities, makes it easier than ever to move data workloads to Azure Databricks, while minimizing costs and increasing performance. The platform also allows enterprises to unify their data pipelines end-to-end, such as Azure Databricks and Azure HDInsight.”

Unravel for Azure Databricks delivers comprehensive monitoring, troubleshooting, and application performance management for Azure Databricks environments.

The new additions to the platform include:

- Slice and dice migration support – Unravel now includes migration intelligence to help customers assess their migration planning to Azure Databricks in version 4.5.5.0. Slice and dice migration support provides impact analysis by applications and workloads. It also features recommended cloud cluster topology and cost estimates by service-level agreement (SLA), as well as auto-scaling impact trend analysis as a result of cloud migration.

- Cost analytics – Unravel will soon add new cost management capabilities to help optimize Azure Databricks workloads as they scale. These new features include cost assurance, cost planning and cost forecasting tools. Together, these tools provide granular detail of individual jobs in Azure Databricks, providing visibility at the workspace, job, and job-run level to track costs or DBUs over time.

- Detailed architectural recommendations: Unravel for Azure Databricks will soon include right-sizing, a feature that recommends virtual machine or workload types that will achieve the same performance on cheaper clusters.

Unravel for Azure Databricks helps operationalize Spark apps on the platform: Azure Databricks customers can shorten the cycle of getting Spark applications into production by relying on the visibility, operational intelligence, and data driven insights and recommendations that only Unravel can provide. Users enjoy greater productivity by eliminating the time spent on tedious, low value tasks such as log data collection, root cause analysis and application tuning.

In addition to being generally available directly from Unravel, Unravel for Azure Databricks is also available on the Azure Marketplace.

Share this

The Latest

September 25, 2020

Michael Olson on the AI+ITOPS Podcast: "I really see AIOps as being a core requirement for observability because it ... applies intelligence to your telemetry data and your incident data ... to potentially predict problems before they happen."

September 24, 2020

Enterprise ITOM and ITSM teams have been welcoming of AIOps, believing that it has the potential to deliver great value to them as their IT environments become more distributed, hybrid and complex. Not so with DevOps teams. It's safe to say they've kept AIOps at arm's length, because they don't think it's relevant nor useful for what they do. Instead, to manage the software code they develop and deploy, they've focused on observability ...

September 23, 2020

The post-pandemic environment has resulted in a major shift on where SREs will be located, with nearly 50% of SREs believing they will be working remotely post COVID-19, as compared to only 19% prior to the pandemic, according to the 2020 SRE Survey Report from Catchpoint and the DevOps Institute ...

September 22, 2020

All application traffic travels across the network. While application performance management tools can offer insight into how critical applications are functioning, they do not provide visibility into the broader network environment. In order to optimize application performance, you need a few key capabilities. Let's explore three steps that can help NetOps teams better support the critical applications upon which your business depends ...

September 21, 2020

In Episode 8, Michael Olson, Director of Product Marketing at New Relic, joins the AI+ITOPS Podcast to discuss how AIOps provides real benefits to IT teams ...

September 18, 2020

Will Cappelli on the AI+ITOPS Podcast: "I'll predict that in 5 years time, APM as we know it will have been completely mutated into an observability plus dynamic analytics capability."

September 17, 2020
One of the benefits of doing the EMA Radar Report: AIOps- A Guide for Investing in Innovation was getting data from all 17 vendors on critical areas ranging from deployment and adoption challenges, to cost and pricing, to architectural and functionality insights across everything from heuristics, to automation, and data assimilation ...
September 16, 2020

When you consider that the average end-user interacts with at least 8 applications, then think about how important those applications are in the overall success of the business and how often the interface between the application and the hardware needs to be updated, it's a potential minefield for business operations. Any single update could explode in your face at any time ...

September 15, 2020

Despite the efforts in modernizing and building a robust infrastructure, IT teams routinely deal with the application, database, hardware, or software outages that can last from a few minutes to several days. These types of incidents can cause financial losses to businesses and damage its reputation ...

September 14, 2020

In Episode 7, Will Cappelli, Field CTO of Moogsoft and Former Gartner Research VP, joins the AI+ITOPS Podcast to discuss the future of APM, AIOps and Observability ...